matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Stetigkeit von Funktionen
Status: (Frage) beantwortet Status 
Datum: 19:13 Fr 30.09.2016
Autor: jackdaniel

Aufgabe
Zeige oder wiederlege, dass die Funktion [mm] f(x) = \bruch{1}{1+x^2}[/mm]  in ihrem Definitionsbereich gleichmäßig stetig ist.
Hinweis: [mm] \bruch{|x|}{1+x^2} \le 1[/mm]

Ich weiß leider nicht wirklich wie ich hier zum Ziel komme.
Gleichmäßige Stetigkeit zeige ich ja im allgemeinen mit dem Epsilon-Delta Kriterium:
[mm] \forall\varepsilon>0. \exists\delta>0. \forall x,y\in \IR.\vert x-y\vert<\delta \Rightarrow \vert f(x)-f(y)\vert<\varepsilon [/mm]

Meine Vermutung ist, dass die Funktion nicht gleichmäßig stetig ist, also würde ich ja zeigen, dass:
[mm] \exists\varepsilon>0. \forall\delta>0. \exists x,y\in \IR. \vert x-y\vert<\delta\wedge\vert f(x)-f(y)\vert\ge\varepsilon [/mm]

Meine Idee wäre jetzt gewesen mit:

[mm] \vert \bruch{1}{1+x^2} [/mm] - [mm] \bruch{1}{1+y^2} \vert [/mm] = [mm] \vert \bruch{(1+y^2)-(1+x^2)}{(1+x^2)(1+y^2)} \vert [/mm] = [mm] \vert \bruch{y^2-x^2}{(1+x^2)(1+y^2)} \vert [/mm]

anzufangen.
Das war es dann leider auch schon.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Fr 30.09.2016
Autor: ChopSuey

Hallo jackdaniel!

> Zeige oder wiederlege, dass die Funktion [mm]f(x) = \bruch{1}{1+x^2}[/mm]
>  in ihrem Definitionsbereich gleichmäßig stetig ist.
>  Hinweis: [mm]\bruch{|x|}{1+x^2} \le 1[/mm]
>  Ich weiß leider nicht
> wirklich wie ich hier zum Ziel komme.

Allg. besteht der Unterschied zwischen gleichmäßiger und punktweiser Stetigkeit darin, dass bei gleichmäßiger Stetigkeit dein $ [mm] \delta$ [/mm] nicht von $ [mm] x_0$, [/mm] sondern nur von $ [mm] \varepsilon$ [/mm] abhängen darf.

>  Gleichmäßige Stetigkeit zeige ich ja im allgemeinen mit
> dem Epsilon-Delta Kriterium:
>  [mm]\forall\varepsilon>0. \exists\delta>0. \forall x,y\in \IR.\vert x-y\vert<\delta \Rightarrow \vert f(x)-f(y)\vert<\varepsilon[/mm]
>  
> Meine Vermutung ist, dass die Funktion nicht gleichmäßig
> stetig ist, also würde ich ja zeigen, dass:
>  [mm]\exists\varepsilon>0. \forall\delta>0. \exists x,y\in \IR. \vert x-y\vert<\delta\wedge\vert f(x)-f(y)\vert\ge\varepsilon[/mm]
>  
> Meine Idee wäre jetzt gewesen mit:
>  
> [mm]\vert \bruch{1}{1+x^2}[/mm] - [mm]\bruch{1}{1+y^2} \vert[/mm] = [mm]\vert \bruch{(1+y^2)-(1+x^2)}{(1+x^2)(1+y^2)} \vert[/mm]
> = [mm]\vert \bruch{y^2-x^2}{(1+x^2)(1+y^2)} \vert[/mm]

Bei dieser Aufgabe kommt man durch eine relativ großzügige Abschätzung ans Ziel. Es ist

$ [mm] \frac{\vert x+x_0 \vert}{(1+x^2)(1+x_0^2)} \le [/mm] 1 $

Schau mal, ob du damit zeigen kannst, dass sie gleichmäßig stetig ist.

>  
> anzufangen.
> Das war es dann leider auch schon.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

LG,
CS


Bezug
                
Bezug
Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Fr 30.09.2016
Autor: jackdaniel

Hi,

danke für die Hilfe.
Eine kurze Anmerkung: Meine ausgängliche Behauptung, dass die Funktion nicht gleichmäßig stetig ist, ist falsch. Sie ist stetig.
Dies versuche ich nun zu zeigen:

[mm] \vert \bruch{y^2-x^2}{(1+x^2)(1+y^2)} \vert [/mm] = [mm] \bruch{\vert y-x \vert\vert y+x \vert}{(1+x^2)(1+y^2)} <\delta\bruch{\vert y+x \vert}{y^2+x^2+1+(xy)^2} \le \delta\bruch{\vert y+x \vert}{1+(xy)^2} \le \delta [/mm]

(Im vorletzten Schritt habe ich den Hinweis verwendet)

Ab hier weiß ich leider nicht weiter. Ich habe wohl das Kriterium doch nicht so recht verstanden. Nach meinem Verständnis habe ich mit dieser Ungleichungskette jetzt ja nur gezeigt, dass [mm] \vert [/mm] f(x)-f(y) [mm] \vert <\varepsilon [/mm] und [mm] <\delta. [/mm]

Oder habe ich genau damit gezeigt, dass ich [mm] \delta [/mm] beliebig klein wählen kann?

Bezug
                        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Sa 01.10.2016
Autor: ChopSuey

Hallo,

> Hi,
>  
> danke für die Hilfe.
>  Eine kurze Anmerkung: Meine ausgängliche Behauptung, dass
> die Funktion nicht gleichmäßig stetig ist, ist falsch.
> Sie ist stetig.

Ja, sie ist gleichmäßig stetig.

>  Dies versuche ich nun zu zeigen:
>
> [mm]\vert \bruch{y^2-x^2}{(1+x^2)(1+y^2)} \vert[/mm] = [mm]\bruch{\vert y-x \vert\vert y+x \vert}{(1+x^2)(1+y^2)} <\delta\bruch{\vert y+x \vert}{y^2+x^2+1+(xy)^2} \le \delta\bruch{\vert y+x \vert}{1+(xy)^2} \le \delta[/mm]


Wegen

$ [mm] \frac{\vert x+x_0 \vert}{(1+x^2)(1+x_0^2)} \le [/mm] 1 $

gilt

[mm]\bruch{\vert y-x \vert\vert y+x \vert}{(1+x^2)(1+y^2)} \le \vert y-x \vert\cdot 1 = \vert y-x \vert < \delta [/mm]

Setze $ [mm] \varepsilon [/mm] := [mm] \delta [/mm] $


>  
> (Im vorletzten Schritt habe ich den Hinweis verwendet)
>  
> Ab hier weiß ich leider nicht weiter. Ich habe wohl das
> Kriterium doch nicht so recht verstanden. Nach meinem
> Verständnis habe ich mit dieser Ungleichungskette jetzt ja
> nur gezeigt, dass [mm]\vert[/mm] f(x)-f(y) [mm]\vert <\varepsilon[/mm] und
> [mm]<\delta.[/mm]
>  
> Oder habe ich genau damit gezeigt, dass ich [mm]\delta[/mm] beliebig
> klein wählen kann?

Kannst du den Beweis nun formulieren? Vielleicht ist es hilfreich sich mit den [mm] $\varepsilon-\delta$-Beweismethoden [/mm] bei punktweiser Stetigkeit vertraut zu machen um ein Gefühl dafür zu entwickeln.

LG,
CS

Bezug
        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Sa 01.10.2016
Autor: fred97

Falls der Mittelwertsatz der Differentialrechnung benutzt werden darf:

zeige: $|f'(x)|= [mm] \bruch{1}{1+x^2}* \bruch{2|x|}{1+x^2} \le [/mm] 1$  für jedes x.

Damit haben wir

  $ |f(x)-f(y)| [mm] \le [/mm] |x-y|$  für $x,y [mm] \in \IR$. [/mm]

f ist also sogar Lipschitzstetig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]