matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenAus eulerscher Form in Polarfo
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "komplexe Zahlen" - Aus eulerscher Form in Polarfo
Aus eulerscher Form in Polarfo < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aus eulerscher Form in Polarfo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mi 22.12.2010
Autor: lexxy

Aufgabe
Bilden Sie von den folgenden Zahlen die algebraische Form und die Polarform!
[mm] z_{1} [/mm] = [mm] -e^{70° * i} [/mm] (LaTeX frisst das Gradzeichen nach der 70)

Hallo Matheraum.de!

Mit obiger Aufgabe komme ich nicht zurecht. Allein die Fragestellung bereitet mir Kopfzerbrechen. Ist [mm] z_{1} [/mm] in dem Fall keine komplexe Zahl? Falls sie eine ist, ist der Betrag von ihr -1 (wodurch das Vorzeichen der eulerschen Zahl zustande kommt - an sich ein Widerspruch, da ein Betrag stets positiv ist).

[mm] r_{1} [/mm] = [mm] \wurzel{(-1 * cos(70))^{2} + (-1 * sin(70))^{2}} [/mm] = 1

Da aber 1 ungleich -1 ist haut das irgendwie nicht hin bei mir. Wo liegt mein Fehler, wie lautet die Zahl nun in den anderen Formen?

Vielen Dank

        
Bezug
Aus eulerscher Form in Polarfo: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 22.12.2010
Autor: schachuzipus

Hallo lexxy,


> Bilden Sie von den folgenden Zahlen die algebraische Form
> und die Polarform!
>  [mm]z_1=-e^{70^{\circ} \cdot{} i}[/mm] (LaTeX frisst das Gradzeichen nach
> der 70)
>  Hallo Matheraum.de!
>  
> Mit obiger Aufgabe komme ich nicht zurecht. Allein die
> Fragestellung bereitet mir Kopfzerbrechen. Ist [mm]z_{1}[/mm] in dem
> Fall keine komplexe Zahl?

Doch doch

> Falls sie eine ist, ist der
> Betrag von ihr -1

Wie kann das sein? Der Betrag ist doch immer [mm] $\ge [/mm] 0$ !!!

> (wodurch das Vorzeichen der eulerschen
> Zahl zustande kommt - an sich ein Widerspruch, da ein
> Betrag stets positiv ist).

Aha!

Also stimmt deine Annahme nicht, dass das Vorzeichen daher stammt ...

Wie liegt denn im Vergleich zu einer komplexen Zahl $z$ die komplexe Zahl $-z$ ??

>  
> [mm]r_{1}[/mm] = [mm]\wurzel{(-1 * cos(70))^{2} + (-1 * sin(70))^{2}}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=

> 1
>  
> Da aber 1 ungleich -1 ist haut das irgendwie nicht hin bei
> mir. Wo liegt mein Fehler, wie lautet die Zahl nun in den
> anderen Formen?

Nun, es entspricht $70^{\circ}$ doch $\frac{7}{18}\pi}$

Du kannst also schreiben: $-e^{70^{\circ}\cdot{}i}=-e^{\frac{7}{18}i}=-\left[\cos\left(\frac{7}{18}\pi\right)+i\cdot{}\sin\left(\frac{7}{18}\pi\right]$

Wenn du magst, kannst du das "-" in die Klammer reinziehen und die Symmetrieeigenschaften von Sinus und Cosinus ausnutzen.

Sonst rechne es so aus und multipliziere das Ergebnis am Ende mit $-1$

>  
> Vielen Dank

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]