matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBanach - Raum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Banach - Raum
Banach - Raum < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach - Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 20.07.2008
Autor: Irmchen

Guten Abend alle zusammen!

Während ich hier das Thema Differentialgleichungen mit konstanten Koeffizienten bearbeite, ist mir eine Bemerkung aufgefallen, die ich nicht so ganz verstehe.

Es heißt:

JEDER ENDLICH DIMENSIONALE NORMIERTE RAUM IST EIN BANACH - RAUM.

Mir ist klar, dass ein Banach - Raum ein normierter Raum ist, der vollständig ist. Das würde also bedeutet, dass in einem endlich dimensionalen normierten Raum jede Cuachy - Folge konvergert, Richtig?
Aber warum ist das so????
Mir ist das leider nicht klar, obwohl das wahrscheinlich eine sehr einfache Angelegenheit ist....

Hoffe, dass mir jemand helfen kann!

Viele Grüße
Irmchen

        
Bezug
Banach - Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 So 20.07.2008
Autor: Merle23


> Guten Abend alle zusammen!
>  
> Während ich hier das Thema Differentialgleichungen mit
> konstanten Koeffizienten bearbeite, ist mir eine Bemerkung
> aufgefallen, die ich nicht so ganz verstehe.
>  
> Es heißt:
>  
> JEDER ENDLICH DIMENSIONALE NORMIERTE RAUM IST EIN BANACH -
> RAUM.
>  
> Mir ist klar, dass ein Banach - Raum ein normierter Raum
> ist, der vollständig ist. Das würde also bedeutet, dass in
> einem endlich dimensionalen normierten Raum jede Cuachy -
> Folge konvergert, Richtig?
>  Aber warum ist das so????

Ein endlich-dimensionaler VR ist immer isomorph zu [mm] \IR^n [/mm] mit geeignetem n.
In endlich-dimensionalen, normierten Räumen sind alle Normen äquivalent zueinander.

Das wären so die beiden Brocken aus denen man einen Beweis bauen könnte.

Vielleicht kann man auch immer gleich einen passenden isometrischen Isomorphismus in den [mm] \IR^n [/mm] angeben, das wäre sogar der beste Beweis ^^

>  Mir ist das leider nicht klar, obwohl das wahrscheinlich
> eine sehr einfache Angelegenheit ist....
>  
> Hoffe, dass mir jemand helfen kann!
>  
> Viele Grüße
>  Irmchen

Bezug
                
Bezug
Banach - Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mo 21.07.2008
Autor: Irmchen

Vielen Dank für den Beitrag! Ich habe einen Beweis gefunden und denke es jetzt nachvollziehen zu können!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]