matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis von Vektorräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von Vektorräumen
Basis von Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 10.01.2018
Autor: Tobikall

Aufgabe
Es seien K ein Körper und V,W Vektorräume über K. Auf V xW seien + : (V xW)× (V xW) → V xW und · : K x(V xW) → V xW definiert durch
(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),
α·(v1,w1) = (α·v1,α·w1)
für (v1,w1),(v2,w2) ∈ V ×W und α ∈ K.

Aufgabe:
Es seien m,n ∈ N und x1,...,xn eine Basis von V sowie y1,...,ym eine Basis von W. Zeigen Sie, dass
(x1,0),...,(xn,0),(0,y1),...,(0,ym) eine Basis von V ×W ist.

Hallo,
bei dem Beweis komm ich nicht weiter. Man kann doch mit dem Basisergänzugnssatz und der linearen Unabhängigkeit der einzelnen Vektoren hier argumentieren, nur mit der Verknüpfung von V und W weiß ich nicht wie man das zeigen soll? Hilfe!

        
Bezug
Basis von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mi 10.01.2018
Autor: fred97


> Es seien K ein Körper und V,W Vektorräume über K. Auf V
> xW seien + : (V xW)× (V xW) → V xW und · : K x(V xW)
> → V xW definiert durch
> (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),
> α·(v1,w1) = (α·v1,α·w1)
> für (v1,w1),(v2,w2) ∈ V ×W und α ∈ K.
>
> Aufgabe:
>   Es seien m,n ∈ N und x1,...,xn eine Basis von V sowie
> y1,...,ym eine Basis von W. Zeigen Sie, dass
>  (x1,0),...,(xn,0),(0,y1),...,(0,ym) eine Basis von V ×W
> ist.
>  Hallo,
>  bei dem Beweis komm ich nicht weiter. Man kann doch mit
> dem Basisergänzugnssatz und der linearen Unabhängigkeit
> der einzelnen Vektoren hier argumentieren, nur mit der
> Verknüpfung von V und W weiß ich nicht wie man das zeigen
> soll? Hilfe!


Zeige es direkt !

Sei [mm] b_1=(x_1,0),...,b_n=(x_n,0) [/mm] und [mm] c_1=(0,y_1),...,c_m=(0,y_m). [/mm]

Zeige:

1. Jedes $(v,w) [mm] \in [/mm] V [mm] \times [/mm] W$ läst sich als Linearkombination der Vektoren [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] darstellen.

Dann ist  [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] ein Erzeugendensystem von $ V [mm] \times [/mm] W$.

2. die Vektoren [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] sind linear unabhängig sind.

Bezug
                
Bezug
Basis von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 10.01.2018
Autor: Tobikall

Ok danke schonmal nur liegt hier genau mein Problem :(.
Ich bin mir unsicher wie ich genau den Beweis notieren kann und soll, wenn du mir evtl. nur den Ansatz gibts, sodass ich weitermachen kann wäre das super.

Bezug
                        
Bezug
Basis von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 10.01.2018
Autor: Gonozal_IX

Hiho,

> Ok danke schonmal nur liegt hier genau mein Problem :(.
>  Ich bin mir unsicher wie ich genau den Beweis notieren
> kann und soll, wenn du mir evtl. nur den Ansatz gibts,
> sodass ich weitermachen kann wäre das super.

fred hat doch eigentlich bereits alles hingeschrieben…

Zeige: $(v,w)$ lässt sich als Linearkombination schreiben von [mm] $b_1,...,b_n,c_1,...c_m [/mm] $

1.) Es ist $(v,w) = (v,0) + (0,w)$.

2.) Nun ist $v [mm] \in [/mm] V$ und [mm] $x_1,\ldots,x_n$ [/mm] eine Basis von V, daher lässt sich v schreiben als $v = [mm] \ldots$ [/mm] und damit $(v,0) = [mm] (\ldots,0) [/mm] = [mm] \ldots$ [/mm] (hier sollte eine Linearkombination der [mm] $b_i$'s [/mm] stehen).

3.) Nun ist $w [mm] \in [/mm] W$ und [mm] $y_1,\ldots,y_n$ [/mm] eine Basis von W, daher lässt sich w schreiben als $w = [mm] \ldots$ [/mm] und damit $(0,w) = [mm] (0,\ldots) [/mm] = [mm] \ldots$ [/mm] (hier sollte eine Linearkombination der [mm] $c_i$'s [/mm] stehen).

4.) Aus 1.) 2.) und 3.) folgt dann (v,w) = [mm] \ldots [/mm] (hier steht dann eine Linearkombination von [mm] $b_1,...,b_n,c_1,...c_m [/mm] $)

Für die lineare Unabhängigkeit nenne erst mal die Definition davon, dann sehen wir weiter.

Gruß,
Gono





Bezug
                                
Bezug
Basis von Vektorräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Mi 10.01.2018
Autor: Tobikall

Danke für die Hilfe es hat geklappt und ich habe die Aufgabe gelöst!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]