matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEinheiten - Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Einheiten - Ring
Einheiten - Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheiten - Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:47 Di 10.07.2012
Autor: AntonK

Aufgabe
[mm] R^x=(a \in [/mm] R, es gibt b [mm] \in [/mm] R mit ab=1)

Hallo Leute,

kurze Frage und zwar steht bei mir im Skript für [mm] R=\IZ [/mm] sind die Einheiten 1 und -1 wegen 1*1=1 und (-1)*(-1)=1.

Nehmen wir mal an [mm] R=\IR [/mm] das hieße doch, dass es unendlich viele Einheiten gibt, da 2*1/2=1, 3*1/3=1... ist oder?

Außerdem steht dort noch:

"Die Einheiten von C sind alle komplexen Zahlen ungleich 0."
Warum gilt dies?

Danke schonmal!

        
Bezug
Einheiten - Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 10.07.2012
Autor: teo


> [mm]R^x=(a \in[/mm] R, es gibt b [mm]\in[/mm] R mit ab=1)
>  Hallo Leute,
>  
> kurze Frage und zwar steht bei mir im Skript für [mm]R=\IZ[/mm]
> sind die Einheiten 1 und -1 wegen 1*1=1 und (-1)*(-1)=1.
>  
> Nehmen wir mal an [mm]R=\IR[/mm] das hieße doch, dass es unendlich
> viele Einheiten gibt, da 2*1/2=1, 3*1/3=1... ist oder?

Ja, [mm] \IR [/mm] ist ja auch ein Körper
  

> Außerdem steht dort noch:
>  
> "Die Einheiten von C sind alle komplexen Zahlen ungleich
> 0."
>   Warum gilt dies?

[mm] \IC [/mm] ist ein Körper

>  
> Danke schonmal!


Bezug
                
Bezug
Einheiten - Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 10.07.2012
Autor: AntonK

Was genau ist der Unterschied zwischen Körper und Ring? Die Axiome für Körper sind mir zwar bekannt, das einzige was da noch einen Unterschied macht, ist die Tatsache, dass ein Körper auch bezüglich der Multiplikation ein Inverses besitzen muss, deswegen gilt dies?

Bezug
                        
Bezug
Einheiten - Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 10.07.2012
Autor: teo


> Was genau ist der Unterschied zwischen Körper und Ring?
> Die Axiome für Körper sind mir zwar bekannt, das einzige
> was da noch einen Unterschied macht, ist die Tatsache, dass
> ein Körper auch bezüglich der Multiplikation ein Inverses
> besitzen muss, deswegen gilt dies?

Ja und jetzt überleg dir was die Existenz eines Inversen bedeutet! Und dann denk nochmal über die Einheiten nach.

Bezug
                                
Bezug
Einheiten - Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 10.07.2012
Autor: AntonK

Das ist eigentlich ziemlich logisch, ist ja genau die Definition eines Inversen bezüglich der Multiplikation. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]