matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGleichung lokal x,y auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichung lokal x,y auflösen
Gleichung lokal x,y auflösen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lokal x,y auflösen: Übung
Status: (Frage) beantwortet Status 
Datum: 18:11 Mo 22.07.2013
Autor: ellegance88

Aufgabe
Für welche Punkte (x,y) lässt sich die Gleichung [mm] (x^2+y^2)^2=2(x^2-y^2) [/mm] lokal nach x bzw nach y auflösen?

Hallo,

[mm] f(x,y)=(x^2+y^2)^2=2(x^2-y^2) [/mm]
[mm] f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2 [/mm]

[mm] \bruch{df}{dy} [/mm] = [mm] 4x^2y+4y^3+4y=0 [/mm]

[mm] 4y(x^2+y^2+4)=0 [/mm]
y=0

Für y=0
x=0 oder [mm] x=\wurzel{2},-\wurzel{2} [/mm]
überall lokal nach y-Auflösbar außer in (0,0) [mm] (+-\wurzel{2},0) [/mm]

nach x:

[mm] \bruch{df}{dx} 4x^3+4xy^2-4x=0 [/mm]
[mm] 4x(x^2+y^2-1)=0 [/mm]

1.Fall x=0
[mm] y^4=-2y^2 [/mm]
[mm] y^4+2y^2=0 [/mm]
y=0

2.Fall [mm] x^2+y^2=1 [/mm]

[mm] 1=2(x^2-y^2) [/mm]
[mm] 1=2(1-y^2-y^2) [/mm]
[mm] 1=2(-2y^2+1) [/mm]

[mm] y=+-{\bruch{1}{2}} [/mm]

überall lokal nach x-Auflösbar außer in (0,0) [mm] (+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}}) [/mm]


ist das richtig?

Lg

        
Bezug
Gleichung lokal x,y auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mo 22.07.2013
Autor: schachuzipus

Hallo ellegance,


> Für welche Punkte (x,y) lässt sich die Gleichung
> [mm](x^2+y^2)^2=2(x^2-y^2)[/mm] lokal nach x bzw nach y auflösen?
> Hallo,

>

> [mm]f(x,y)=(x^2+y^2)^2=2(x^2-y^2)[/mm]
> [mm]f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2[/mm]

???

[mm] $f(x,y):=(x^2+y^2)^2-2(x^2-y^2)$ [/mm]


Nun [mm] $\nabla [/mm] f(x,y)$ bestimmen und schauen, für welche $(x,y)$ dieser [mm] $\neq\vektor{0\\0}$ [/mm] ist ...

>

> [mm]\bruch{df}{dy}[/mm] = [mm]4x^2y+4y^3+4y=0[/mm]

>

> [mm]4y(x^2+y^2+4)=0[/mm]
> y=0

>

> Für y=0
> x=0 oder [mm]x=\wurzel{2},-\wurzel{2}[/mm]
> überall lokal nach y-Auflösbar außer in (0,0)
> [mm](+-\wurzel{2},0)[/mm]

>

> nach x:

>

> [mm]\bruch{df}{dx} 4x^3+4xy^2-4x=0[/mm]
> [mm]4x(x^2+y^2-1)=0[/mm]

>

> 1.Fall x=0
> [mm]y^4=-2y^2[/mm]
> [mm]y^4+2y^2=0[/mm]
> y=0

>

> 2.Fall [mm]x^2+y^2=1[/mm]

>

> [mm]1=2(x^2-y^2)[/mm]
> [mm]1=2(1-y^2-y^2)[/mm]
> [mm]1=2(-2y^2+1)[/mm]

>

> [mm]y=+-{\bruch{1}{2}}[/mm]

>

> überall lokal nach x-Auflösbar außer in (0,0)
> [mm](+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}})[/mm]

>
>

> ist das richtig?

>

> Lg

Gruß
schachuzipus

Bezug
                
Bezug
Gleichung lokal x,y auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 22.07.2013
Autor: ellegance88

Ich habe mal jetzt eine Frage es kann doch nicht sein, dass das komplett falsch ist? so hat der Übungsleiter es gemacht bei der gleichen Aufgabe mit anderen Zahlen. ich habe es analog 1 zu 1 so übernommen.

nun bin ich verwirrt? egal welche Aufgabe er gemacht hat ist falsch sei es diese hier oder die mit dem Integral vorher.

Lg,


Bezug
        
Bezug
Gleichung lokal x,y auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 22.07.2013
Autor: leduart

Hallo
> Für welche Punkte (x,y) lässt sich die Gleichung
> [mm](x^2+y^2)^2=2(x^2-y^2)[/mm] lokal nach x bzw nach y auflösen?
>  Hallo,
>  
> [mm]f(x,y)=(x^2+y^2)^2=2(x^2-y^2)[/mm]
>  [mm]f(x,y)=x^4+2x^2y^2+y^4=2x^2-2y^2[/mm]

so kann man f(x,y) nicht schreiben!
aber diese f(x,y hat du ja auch nicht abgeleitet sonderm
[mm]f(x,y)=(x^2+y^2)^2-2(x^2-y^2)[/mm]

> [mm]\bruch{df}{dy}[/mm] = [mm]4x^2y+4y^3+4y=0[/mm]
>  
> [mm]4y(x^2+y^2+4)=0[/mm]
>  y=0
>
> Für y=0
>  x=0 oder [mm]x=\wurzel{2},-\wurzel{2}[/mm]
>  überall lokal nach y-Auflösbar außer in (0,0)
> [mm](+-\wurzel{2},0)[/mm]

richtig, besser die P punkte angeben

> nach x:
>  
> [mm]\bruch{df}{dx} 4x^3+4xy^2-4x=0[/mm]
>  [mm]4x(x^2+y^2-1)=0[/mm]
>  
> 1.Fall x=0
>  [mm]y^4=-2y^2[/mm]
>  [mm]y^4+2y^2=0[/mm]
>  y=0
>  

richtig

> 2.Fall [mm]x^2+y^2=1[/mm]
>  
> [mm]1=2(x^2-y^2)[/mm]
>  [mm]1=2(1-y^2-y^2)[/mm]
>  [mm]1=2(-2y^2+1)[/mm]
>  
> [mm]y=+-{\bruch{1}{2}}[/mm]

das ist falsch , das ist [mm] y^2 [/mm] nicht y
aber sonst richtig.

>  
> überall lokal nach x-Auflösbar außer in (0,0)
> [mm](+-\wurzel{{\bruch{3}{2}}},{\bruch{1}{2}})[/mm]

wieder die schlechte Schreiberise mit +- und y falsch.  
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]