matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Grenzwert
Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 23.11.2005
Autor: Freak84

Hi Leute
Ich habe hier ein Problem ich muss ein Grenzwert bestimmen, weiß auch was raus kommt aber ich weiß nicht genau wie ich den weg zeigen kann.

[mm] \limes_{n\rightarrow\infty} [/mm] (1 - [mm] (1/n))^{n} [/mm] = [mm] e^{-1} [/mm]

Wie muss ich den term denn (1 - [mm] (1/n))^{n} [/mm] nun umformen, wenn ich nur das wissen vorraussetzen darf dass,

[mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] (1/n))^{n} [/mm] = e


Vielen Dank


        
Bezug
Grenzwert: Tipp
Status: (Antwort) fertig Status 
Datum: 22:15 Mi 23.11.2005
Autor: mathmetzsch

Hallo,

also das schreit ja förmlich nach Anwendung des binomischen Satzes.

Wie beeinflusst das Vorzeichen die Summe? Schau zur Not auch mal in deinen Beweis von

$ [mm] \limes_{n\rightarrow\infty} [/mm] $ (1 + $ [mm] (1/n))^{n} [/mm] $ = e

VG mathmetzsch

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 23.11.2005
Autor: Freak84

Vielen Dank für den Tipp
Nur mein Problem ist , den Beweis habe ich nie durchgeführ. Habe das einfach als gegeben bekommen.
Und als binomialssatz finde ich immer nur [mm] (a+b)^{n} [/mm]  und nicht [mm] (a-b)^{n} [/mm] das ist ja ein unterschied oder ?

Danke

Bezug
                        
Bezug
Grenzwert: Binomischer Lehrsatz
Status: (Antwort) fertig Status 
Datum: 01:14 Do 24.11.2005
Autor: Bastiane

Hallo!

> Vielen Dank für den Tipp
>  Nur mein Problem ist , den Beweis habe ich nie
> durchgeführ. Habe das einfach als gegeben bekommen.
>  Und als binomialssatz finde ich immer nur [mm](a+b)^{n}[/mm]  und
> nicht [mm](a-b)^{n}[/mm] das ist ja ein unterschied oder ?

Also, eine Lösung habe ich noch nicht, aber mit Binomischer Satz ist wohl der []Binomische Lehrsatz gemeint. In deinem Fall wäre dann wohl x=1 und [mm] y=(-\bruch{1}{n}) [/mm] - evtl. kommst du damit dann weiter?

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Do 24.11.2005
Autor: Leopold_Gast

Zeige:

[mm]\left( 1 - \frac{1}{n} \right)^n \ = \ \frac{1}{\left( 1 + \frac{1}{n-1} \right)^{n-1}} \cdot \frac{1}{1 + \frac{1}{n-1}}[/mm]

Daran kannst du alles ablesen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]