matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: wie weiter
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 26.01.2011
Autor: jooo

Aufgabe
Gesucht:
[mm] \limes_{x\rightarrow\infty}\bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}} [/mm]

[mm] -->\wurzel{\limes_{x\rightarrow\infty}(x+1)/x}- \wurzel{\limes_{x\rightarrow\infty}(3x+2)/x} [/mm]

Wie mache ich weiter?

Gruß joooo


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mi 26.01.2011
Autor: fred97


> Gesucht:
>  
> [mm]\limes_{x\rightarrow\infty}\bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}}[/mm]

Erweitere [mm] \bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}} [/mm]  mit   [mm] \wurzel{x+1}+\wurzel{3x+2} [/mm]

FRED

>  
> [mm]-->\wurzel{\limes_{x\rightarrow\infty}(x+1)/x}- \wurzel{\limes_{x\rightarrow\infty}(3x+2)/x}[/mm]
>  
> Wie mache ich weiter?
>  
> Gruß joooo
>  


Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Mi 26.01.2011
Autor: Marcel

Hallo,

> Gesucht:
>  
> [mm]\limes_{x\rightarrow\infty}\bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}}[/mm]
>  
> [mm]-->\wurzel{\limes_{x\rightarrow\infty}(x+1)/x}- \wurzel{\limes_{x\rightarrow\infty}(3x+2)/x}[/mm]
>  
> Wie mache ich weiter?

die Idee ist gar nicht schlecht gewesen. Du darfst den Limes jeweils wegen der Stetigkeit der Wurzelfunktion unter die Wurzel ziehen, wenn die Grenzwerte darunter existieren (folgt wegen Stetigkeit der Wurzelfunktion oder auch aus $0 [mm] \le a_n \to [/mm] a [mm] \ge [/mm] 0 [mm] \Rightarrow \sqrt{a_n} \to \sqrt{a}$). [/mm]

Weiter brauchst Du, dass die Summenfolge zweier konvergenter Folgen gegen die Summe der Grenzwerte konvergiert. (Und "Rechenregeln für Wurzeln".)

Daher ist hier die eigentliche Logik die:
Wegen [mm] $1=\sqrt{1}=\sqrt{1+0}=\sqrt{1+\lim_{x \to \infty}\frac{1}{x}}=\sqrt{\lim_{x \to \infty} \frac{x+1}{x}}=\lim_{x \to \infty}\sqrt{\frac{x+1}{x}}$ [/mm] und [mm] $\sqrt{3}=\sqrt{3+0}+0=\sqrt{3+\lim_{x \to \infty}\frac{2}{x}}=\sqrt{\lim_{x \to \infty}\frac{3x+2}{x}}=\lim_{x \to \infty}\sqrt{\frac{3x+2}{x}}$ [/mm] ist

[mm] $$1-\sqrt{3}=\wurzel{\limes_{x\rightarrow\infty}(x+1)/x}- \wurzel{\limes_{x\rightarrow\infty}(3x+2)/x}=\limes_{x\rightarrow\infty}\wurzel{(x+1)/x}- \limes_{x\rightarrow\infty}\wurzel{(3x+2)/x}=\limes_{x\rightarrow\infty}\underbrace{\bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}}}_{=\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{3x+2}}{\sqrt{x}}}$$ [/mm]

der gesuchte Grenzwert.

Gruß,
Marcel

Bezug
                
Bezug
Grenzwert: Grenzwert(e)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mi 26.01.2011
Autor: Marcel

P.S.:
Mit Freds Vorschlag solltest Du als Grenzwert
[mm] $$\frac{-2}{1+\sqrt{3}}\,,$$ [/mm]
mit meinem als Grenzwert
[mm] $$1-\sqrt{3}$$ [/mm]
erhalten. Diese Grenzwerte sollten natürlich nur einer sein. Dass aber in der Tat
[mm] $$\frac{-2}{1+\sqrt{3}}=1-\sqrt{3}$$ [/mm]
gilt, erkennst Du, indem Du die Gleichung in eine äquivalente umformst, wenn Du die gesamte Gleichung mit [mm] $1+\sqrt{3}$ [/mm] multiplizierst.

Gruß,
Marcel


Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Mi 26.01.2011
Autor: jooo

Danke für die ausführliche Antwort! Konnte sie nachvollziehen :-)
Hat mir sehr geholfen!

Gruß Jooo

Bezug
                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 26.01.2011
Autor: Marcel

Hallo Jooo,

> Danke für die ausführliche Antwort! Konnte sie
> nachvollziehen :-)
>  Hat mir sehr geholfen!

gerne. Hast Du auch Freds Vorschlag nachvollzogen? Da braucht man an einer Stelle auch (unter anderem) die Stetigkeit der Wurzelfunktion und sowas wie
[mm] $$\lim_{x \to \infty} \frac{a_n x^n+...+a_1x^1+a_0}{b_n x^n+...+b_1x^1+b_0}=\frac{a_n}{b_n}\,,$$ [/mm]

was man sich einfach durch "Vorklammern von [mm] $x^n$ [/mm] im Zähler und Nenner und dann mit 'Rechenregln für konvergente Folgen/Funktioen'" überlegen kann.

P.S.:
Mit de l'Hospital kann man sich diese Beziehung auch überlegen; allerdings ist das wie mit Kanonen auf Spatzen schießen.

Gruß,
Marcel

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mi 26.01.2011
Autor: abakus


> Gesucht:
>  
> [mm]\limes_{x\rightarrow\infty}\bruch{\wurzel{x+1}-\wurzel{3x+2}}{\wurzel{x}}[/mm]
>  
> [mm]-->\wurzel{\limes_{x\rightarrow\infty}(x+1)/x}- \wurzel{\limes_{x\rightarrow\infty}(3x+2)/x}[/mm]
>  
> Wie mache ich weiter?
>  
> Gruß joooo
>  

Du kannst auch im Zähler [mm] \wurzel{x} [/mm] ausklammern.
[mm]\limes_{x\rightarrow\infty}\wurzel{x}\bruch{\wurzel{1+\bruch{1}{x}}-\wurzel{3+\bruch{2}{x}}}{\wurzel{x}}[/mm]
Daraus wird
[mm]\limes_{x\rightarrow\infty}(\wurzel{1+\bruch{1}{x}}-\wurzel{3+\bruch{2}{x}})[/mm].
Gruß Abakus

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Mi 26.01.2011
Autor: jooo

Danke für den Hinweis!

Gruß Jooo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]