matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenInjektiv, Surjektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Injektiv, Surjektiv
Injektiv, Surjektiv < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv, Surjektiv: Beweisstrategie
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 08.11.2021
Autor: b.reis

Aufgabe
Untersuchen Sie die folgende Abbildung auf Injektivität, Surjektivität und Bijektivität und beweisen Sie ihre Ergebnisse

g: [mm] \IR [/mm] -> [mm] \IR [/mm] x -> 1-2x

h: [mm] \IN [/mm] -> [mm] \IN_{0} [/mm] n -> [mm] n^2 [/mm] -1

Hallo

Meine Frage ist, im Beweis für die Subjektivität von g gilt

für beliebig y, wähle x = (1-y)/2 mit x aus [mm] \IR [/mm]

es gilt g(x) = 1-2(1-y/2)=y

In der Funktion h mache ich das gleiche, wähle n = [mm] \wurzel{y+1} [/mm] mit n aus [mm] \IN [/mm]

also [mm] \wurzel{y+1}^{2} [/mm] -1 = (y+1) -1 = y

es gilt h(n) = y

Vielleicht habe ich was übersehen, aber die Beweisstrategie geht hier nicht auf denn y ist in [mm] \IN [/mm] und y ist gerade wobei h(n) ungerade.

somit trifft n nicht alle y in [mm] \IN_{0} [/mm] aber die Gleichung ging auf.



        
Bezug
Injektiv, Surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mo 08.11.2021
Autor: fred97


> Untersuchen Sie die folgende Abbildung auf Injektivität,
> Surjektivität und Bijektivität und beweisen Sie ihre
> Ergebnisse
>  
> g: [mm]\IR[/mm] -> [mm]\IR[/mm] x -> 1-2x
>  
> h: [mm]\IN[/mm] -> [mm]\IN_{0}[/mm] n -> [mm]n^2[/mm] -1
>  Hallo
>  
> Meine Frage ist, im Beweis für die Subjektivität von g
> gilt
>
> für beliebig y, wähle x = (1-y)/2 mit x aus [mm]\IR[/mm]
>
> es gilt g(x) = 1-2(1-y/2)=y


Ja, damit ist gezeigt, dass g surjektiv ist.

>  
> In der Funktion h mache ich das gleiche, wähle n =
> [mm]\wurzel{y+1}[/mm] mit n aus [mm]\IN[/mm]


Vorsicht !  [mm] \wurzel{y+1} [/mm] muss nicht  in [mm] \IN [/mm] liegen, muss also nicht im Definitionsbereich von h liegen.

>
> also [mm]\wurzel{y+1}^{2}[/mm] -1 = (y+1) -1 = y
>  
> es gilt h(n) = y
>  
> Vielleicht habe ich was übersehen, aber die
> Beweisstrategie geht hier nicht auf denn y ist in [mm]\IN[/mm] und y
> ist gerade wobei h(n) ungerade.


Das verstehe ich nicht. Die Funktion h ist nicht surjektiv.

Mal angenommen h wäre surjektiv. Zu jedem m [mm] \in \IN_0 [/mm] müsste es dann ein n [mm] \in \IN [/mm] geben mit

    [mm] n^2-1=m. [/mm]

Es gibt aber sehr, sehr viele m auf die das nicht zutrifft, z.B. m=1 oder m=2 oder m=4 oder .....

>
> somit trifft n nicht alle y in [mm]\IN_{0}[/mm] aber die Gleichung
> ging auf.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]