matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisIto Formel - kleine Aufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Analysis" - Ito Formel - kleine Aufgabe
Ito Formel - kleine Aufgabe < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ito Formel - kleine Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Fr 17.03.2023
Autor: Jellal

Guten Abend,

nachdem ich gestern die Ito-Formel kennengelernt habe,
muss ich nun lernen, sie richtig zu benutzen.

Wir sind im 1-dim. Fall.
Das Buch benutzt die Notation Y(t):=u(X(t)), mit
dX = b(X(t))dt + [mm] \sigma(X(t)) [/mm] dW
und Ito-Lemma
du(X) = (u'b + [mm] \bruch{1}{2}u'')dt [/mm] + u'dW, wobei ' fuer [mm] \bruch{d}{dx} [/mm] steht.

Wir suchen nun die Funktion Y(t), welche die folgende SDE loest:
dY = Y dW,
Y(0)=1.

Die Loesung ist Y(t) = [mm] e^{-\bruch{t}{2} + W(t)}. [/mm]

Wie komme ich nun dahin?
Wenn ich dY=YdW mit der Ito-Formel vergleiche, bekomme ich
a) Y'=Y und
b) [mm] Y'b+\bruch{1}{2}Y'' [/mm] = 0.

Aus a) folgt Y(t) = [mm] Ae^{X(t)} [/mm] und A wird so gewaehlt, dass [mm] Y(0)=Ae^{X(0)}=1 [/mm] ist (wofuer wir aber erst X(t) brauchen).

Eingesetzt in b), mit Y'=Y''=Y und [mm] e^{x}>0 [/mm] fuer alle x, erhalten wir [mm] b=-\bruch{1}{2}. [/mm]

Daraus folgt X(t) = [mm] -\bruch{1}{2}t [/mm] + [mm] \hat{\sigma}(X(t))W(t), [/mm] wobei [mm] \hat{\sigma}(X(t)) [/mm] noch unbekannt ist.
Aber wegen X(0)=0 haben wir wenigstens schon A=1, also ist die Loesung
Y(t) = [mm] e^{-\bruch{1}{2}t + \hat{\sigma}(X(t))W(t)}. [/mm]

Woher weiß ich nun, dass [mm] \hat{\sigma}=1 [/mm] ist wie in der genannten Loesung? Irgendwie hat das [mm] \hat{\sigma} [/mm] doch sicher mit [mm] \sigma [/mm] in der Formel fuer dX zu tun, oder?

VG.



        
Bezug
Ito Formel - kleine Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 18.03.2023
Autor: Gonozal_IX

Hiho,

vorweg: Du arbeitest schlampig und passt nicht auf!

> Wir sind im 1-dim. Fall.
>  Das Buch benutzt die Notation Y(t):=u(X(t)), mit
>  dX = b(X(t))dt + [mm]\sigma(X(t))[/mm] dW
> und Ito-Lemma
>  du(X) = (u'b + [mm]\bruch{1}{2}u'')dt[/mm] + u'dW, wobei ' fuer
> [mm]\bruch{d}{dx}[/mm] steht.

Das passt nicht zusammen.
Nach deiner Itô-Formel spielt das [mm] $\sigma$ [/mm] offensichtlich keine Rolle… da kann also was nicht stimmen.
Der Fehler liegt NICHT im Buch, sondern bei dir…

> Wir suchen nun die Funktion Y(t), welche die folgende SDE
> loest:
>  dY = Y dW,
> Y(0)=1.
>  
> Die Loesung ist Y(t) = [mm]e^{-\bruch{t}{2} + W(t)}.[/mm]
>  
> Wie komme ich nun dahin?
>  Wenn ich dY=YdW mit der Ito-Formel vergleiche, bekomme
> ich
>  a) Y'=Y und
>  b) [mm]Y'b+\bruch{1}{2}Y''[/mm] = 0.

Von der Idee her richtig, aber doch falsch…
Und auch das liegt daran, dass du nicht sauber aufgeschrieben hast.

Was soll $Y'$ denn sein? Es ist [mm] $Y_t [/mm] = [mm] u(X_t)$. [/mm] Wenn du das nun Ableiten würdest, erhieltest du etwas in der Art [mm] $u'(X_t)X'_t$ [/mm] und wir sind wieder beim Problem die Ableitung eines Zufallsprozesses bilden zu müssen… was soll $X'_t$ überhaupt sein??

Schreibe die Ito-Formel bitte sauber hin als $dY = [mm] \ldots$ [/mm] und vergleiche dann mit $dY = YdW$. Stelle beide Seiten nebeneinander und dann vergleiche die Integralbestandteile.

Poste das hier (sauberer Aufschrieb ist das A und O und dir wird dein Fehler dann selber auffallen!) und dann sehen wir weiter.

Gruß,
Gono



Bezug
                
Bezug
Ito Formel - kleine Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Mi 22.03.2023
Autor: Jellal

Hi Gono,

sorry fuer die spaete Reaktion, war etwas abgelenkt von der Sache.

Nach deinem Rueffel habe ich nochmal nachgesehen, und tatsaechlich haben wir an der Stelle im Buch

dX = b(X)dt + dW,

sodass das [mm] \sigma [/mm] gar nicht auftaucht.

Außerdem sollte ich nicht Y' schreiben, sondern nur u' (weil Y ja nur eine Funktion von t ist, und man die Kettenregel braeuchte, wie du sagtest).

Also nochmal:
dX = b(X)dt + dW
Sei Y(t)=u(X(t)).
Ito Formel: dY=du=(u'b + [mm] \bruch{1}{2}u'')dt [/mm] +u'dW

SDE: dY=YdW, Y(0)=1.

Vergleich mit Ito liefert
u'b + [mm] \bruch{1}{2}u''=0 [/mm] (i)
und
u'=u (ii).

Aus (ii) folgt [mm] u(x)=Ae^{x}. [/mm]
Mit (i) und [mm] e^{x}>0 [/mm] folgt
[mm] b=-\bruch{1}{2}. [/mm]

Aus der Formel fuer dX folgt dann mit Integration
X(t) = [mm] -\bruch{1}{2}t [/mm] + W(t).

Aus der Anfangsbedingung folgt A=1.

So in Ordnung?

vG.

Bezug
                        
Bezug
Ito Formel - kleine Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Mi 22.03.2023
Autor: Gonozal_IX

Hiho,


> Also nochmal:
>  dX = b(X)dt + dW
>  Sei Y(t)=u(X(t)).
>  Ito Formel: dY=du=(u'b + [mm]\bruch{1}{2}u'')dt[/mm] +u'dW
>  
> SDE: dY=YdW, Y(0)=1.
>  
> Vergleich mit Ito liefert
>  u'b + [mm]\bruch{1}{2}u''=0[/mm] (i)
>  und
>  u'=u (ii).

[ok]

> Aus (ii) folgt [mm]u(x)=Ae^{x}.[/mm]
>  Mit (i) und [mm]e^{x}>0[/mm] folgt
>  [mm]b=-\bruch{1}{2}.[/mm]

Nur wenn du hier bereits weißt, dass [mm] $A\not= [/mm] 0$ ist, was du aber erst später zeigst.
Es könnte (bisher) ja auch $A=0$ gelten, dann wäre b beliebig.

> Aus der Formel fuer dX folgt dann mit Integration
>  X(t) = [mm]-\bruch{1}{2}t[/mm] + W(t).
>  
> Aus der Anfangsbedingung folgt A=1.

[ok]
  

> So in Ordnung?

Prüfst du die Anfangsbedingung vor der Bestimmung von b, passt alles so.

Gruß,
Gono

Bezug
                                
Bezug
Ito Formel - kleine Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Mi 22.03.2023
Autor: Jellal

Danke dir, Gono!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]