matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörpererweiterung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Körpererweiterung
Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:26 Sa 02.12.2006
Autor: shark4

Aufgabe
Sei [mm]L / K[/mm] eine Körpererweiterung mit [mm]p = [L : K][/mm] eine Primzahl. Zeigen Sie, dass es [mm]a \in L[/mm] gibt mit [mm]L = K(a)[/mm].

Ich weiß, dass beim Körpererweiterungsgrad [mm]p[/mm] das Minimalpolynom folgende Gestalt hat: [mm]X^p + c_{p - 1}X^{p - 1} + \ldots + c_1X + c_0[/mm] (hab mal [mm]c[/mm] anstatt [mm]a[/mm] gewählt damit ich mit der Bezeichnung nicht durcheinander komme). Da es [mm]a \in L[/mm] geben soll mit [mm]L = K(a)[/mm], müsste das Minimalpolynom doch so aussehen: [mm]X^p - b[/mm] und somit ist [mm]a = \sqrt[p]{b}[/mm]. Ist das so einfach, oder hab ich es mir etwas zu leicht gemacht?

        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 02.12.2006
Autor: felixf

Hallo shark4!

> Sei [mm]L / K[/mm] eine Körpererweiterung mit [mm]p = [L : K][/mm] eine
> Primzahl. Zeigen Sie, dass es [mm]a \in L[/mm] gibt mit [mm]L = K(a)[/mm].
>  
> Ich weiß, dass beim Körpererweiterungsgrad [mm]p[/mm] das
> Minimalpolynom folgende Gestalt hat: [mm]X^p + c_{p - 1}X^{p - 1} + \ldots + c_1X + c_0[/mm]
> (hab mal [mm]c[/mm] anstatt [mm]a[/mm] gewählt damit ich mit der Bezeichnung
> nicht durcheinander komme). Da es [mm]a \in L[/mm] geben soll mit [mm]L = K(a)[/mm],
> müsste das Minimalpolynom doch so aussehen: [mm]X^p - b[/mm] und
> somit ist [mm]a = \sqrt[p]{b}[/mm]. Ist das so einfach, oder hab ich
> es mir etwas zu leicht gemacht?

Ja, das ist zu einfach. Das Minimalpolynom kann sehr wohl die allgemeine Form oben haben. Es gibt keinen Grund warum es von der Form [mm] $x^p [/mm] - b$ sein sollte. Und selbst wenn: du hast immer noch nicht gezeigt, dass es ueberhaupt ein solches $a$ gibt.

Fuer die Aufgabe brauchst du den Gradsatz, also wenn $K [mm] \subseteq [/mm] M [mm] \subseteq [/mm] L$ ein Koerperturm ist, dann ist $[L : K] = [L : M] [mm] \cdot [/mm] [M : K]$.

LG Felix




Bezug
                
Bezug
Körpererweiterung: Rückfrage
Status: (Frage) überfällig Status 
Datum: 19:26 Sa 02.12.2006
Autor: shark4

Sei $L / K$ eine Körpererweiterung, $a [mm] \in [/mm] L$, dann ist $K(a) [mm] \subset [/mm] L$ der kleinste Körper, der $K$ und $a$ enthält.
Also müsste ich jetzt annehmen es gibt kein $a [mm] \in [/mm] L$ mit $K(a) [mm] \supseteq [/mm] L$, folglich müsste ein Zwischenkörper $M$ existieren, für den gilt $K [mm] \subseteq [/mm] M [mm] \subseteq [/mm] L$. Laut Gradsatz gilt aber $[L : K] = [L : M] [mm] \cdot [/mm] [M : K] = m [mm] \cdot [/mm] n$.
Widerspruch zur Annahme, dass $p = [L : K]$ eine Primzahl ist.

Stimmt das?

Bezug
                        
Bezug
Körpererweiterung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 05.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]