matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKompakte Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Kompakte Mengen
Kompakte Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakte Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Mi 03.06.2009
Autor: Doemmi

Aufgabe
Es seien (X,d) ein metrischer Raum und A [mm] \subset [/mm] X sowie [mm] A_{i} \subset [/mm] X, i = 1,...,N , kompakte Teilmengen. Zeigen Sie folgende Aussagen:

(i) Ist B [mm] \subset [/mm] X eine abgeschlossene Teilmenge von A, so ist auch B kompakt in X.

(ii) Die Mengen [mm] \bigcap_{i=1}^{N}A_{i} [/mm] und [mm] \bigcup_{i=1}^{n}A_{i} [/mm] sind kompakt.

Der Beweis von Aufgabenteil (i) ist erledigt, mir fehlt nur (ii).
Ich weiß ja, dass alle [mm] A_{i} [/mm] abgeschlossen sind, so weiß ich auch, dass der Schnitt all dieser abgeschlossen ist. Daraus kann ich doch anhand der Aussage von (i) folgern, dass eben auch dieser Schnitt kompakt ist, weil auch er eine abgeschlossene Teilmenge ist. Ist das richtig?

Die Vereinigung bereitet mir da schon mehr Kopfzerbrechen. Mir fehlt auch einfach ein Ansatz.

        
Bezug
Kompakte Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:16 Do 04.06.2009
Autor: felixf

Hallo!

> Es seien (X,d) ein metrischer Raum und A [mm]\subset[/mm] X sowie
> [mm]A_{i} \subset[/mm] X, i = 1,...,N , kompakte Teilmengen. Zeigen
> Sie folgende Aussagen:
>  
> (i) Ist B [mm]\subset[/mm] X eine abgeschlossene Teilmenge von A, so
> ist auch B kompakt in X.
>  
> (ii) Die Mengen [mm]\bigcap_{i=1}^{N}A_{i}[/mm] und
> [mm]\bigcup_{i=1}^{n}A_{i}[/mm] sind kompakt.
>  Der Beweis von Aufgabenteil (i) ist erledigt, mir fehlt
> nur (ii).
>
>  Ich weiß ja, dass alle [mm]A_{i}[/mm] abgeschlossen sind, so weiß
> ich auch, dass der Schnitt all dieser abgeschlossen ist.
> Daraus kann ich doch anhand der Aussage von (i) folgern,
> dass eben auch dieser Schnitt kompakt ist, weil auch er
> eine abgeschlossene Teilmenge ist. Ist das richtig?

Ja.

> Die Vereinigung bereitet mir da schon mehr Kopfzerbrechen.
> Mir fehlt auch einfach ein Ansatz.

Verwende doch einfach die Definition von kompakt. Zeige, dass sie fuer die Vereinigung erfuellt ist, indem du nutzt dass die [mm] $A_i$ [/mm] kompakt sind und es nur endlich viele davon gibt. (Endliche Vereinigungen von endlichen Mengen sind wieder endlich.)

LG Felix


Bezug
                
Bezug
Kompakte Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Do 04.06.2009
Autor: Doemmi

Vielen Dank erstmal!

Okay, wenn ich weiß, dass die Vereinigung endlich ist, kann ich dann schon sagen, dass die Menge abgeschlossen und beschränkt ist? Ich befinde mich ja aber nicht im [mm] \IR^{n}, [/mm] sondern in einem metrischen Raum, deshalb kann ich ja nicht aus abgeschlossen und beschränkt die Kompaktheit folgern.

Bezug
                        
Bezug
Kompakte Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 04.06.2009
Autor: fred97


> Vielen Dank erstmal!
>  
> Okay, wenn ich weiß, dass die Vereinigung endlich ist,

Wieso ist die Vereinigung endlich ?? Von den Mengen [mm] A_i [/mm] weißt Du nur, dass sie kompakt sind.





>  kann
> ich dann schon sagen, dass die Menge abgeschlossen und
> beschränkt ist? Ich befinde mich ja aber nicht im [mm]\IR^{n},[/mm]
> sondern in einem metrischen Raum, deshalb kann ich ja nicht
> aus abgeschlossen und beschränkt die Kompaktheit folgern.



So ist es !

Nimm mal eine offene Überdeckung { [mm] G_t [/mm] } von  $ [mm] \bigcup_{i=1}^{n}A_{i} [/mm] $ her.

Dann ist { [mm] G_t [/mm] } eine offene Überdeckung von [mm] A_1. A_1 [/mm] ist kompakt, also überdecken schon endlich viele G_ts die Menge [mm] A_1. [/mm] Ebenso für [mm] A_2, [/mm] ....

kommst Du jetzt klar ?

FRED

Bezug
                                
Bezug
Kompakte Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Do 04.06.2009
Autor: Doemmi

Ja, jetzt hats Klick gemacht! So krieg ich das hin!
Ich danke dir!
LG Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]