matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesL-R- Zerlegung ohne Zeilenver.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - L-R- Zerlegung ohne Zeilenver.
L-R- Zerlegung ohne Zeilenver. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L-R- Zerlegung ohne Zeilenver.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:23 Sa 02.11.2019
Autor: inkeddude

Aufgabe
Sei $A [mm] \in \mathbb{R}^{n \times n}. [/mm]


a) Wenn $A$ regulär und diagonaldominant ist, dann existiert eine L - R - Zerlegung von $A$, die mit Gaußscher Elimination ohne Zeilenvertauschung bestimmt werden kann.

b) Wenn $A$ symmetrisch positiv definit ist, dann existiert eine L - R - Zerlegung von $A$, die mit Gaußscher Elimination ohne Zeilenvertauschung bestimmt werden kann.

Hallo, ich beschäftige mich momentan mit obiger Aufgabe, aber ich habe Probleme, die Aussagen a) und b) zu zeigen.

Ich bin nicht sehr weit gekommen, aber hier meine Ansätze:






Zu a)
__


Ich habe folgende Tipps dazu bekommen:



(i) Per Induktion zeigen, dass alle Untermatrizen wieder diagonaldominant sind.

(ii) Prüfe, ob der erste Schritt der L - R - Zerlegung durchführbar ist.


Ich verstehe den Tipp $(i)$ nicht... Warum kann ich aus (i)  daraus folgern kann, dass es eine L - R - Zerlegung  von $A$ gibt, die mit Gaußscher Elimination ohne Zeilenvertauschung bestimmt werden kann?



Ich habe mich erst einmal an Tipp (ii) orientiert:


Sei $A [mm] \in \mathbb{R}^{n \times n}$. [/mm]

Da $A$ nach Voraussetzung diagonaldominant ist, gilt: $ 0 [mm] \le \sum\limits_{j = 1, i \neq j}^{n} \vert a_{ij} \vert \le \vert a_{ij} \vert$ [/mm]



Daraus folgt, dass auch $ 0 [mm] \le \sum\limits_{j = 2, i \neq j}^{n} \vert a_{1j} \vert \le \vert a_{11} \vert$ [/mm]



Der Fall $ 0 = [mm] \sum\limits_{j = 2, i \neq j}^{n} \vert a_{1j} \vert [/mm] = [mm] \vert a_{11} \vert$ [/mm] kann nicht auftreten, da alle Einträge der ersten Zeile Null wären und die Matrix somit nicht vollen Zeilenrang hätte. Und wenn die Spalte nicht vollen Zeilenrang hätte, dann wäre die Matrix $A$ auch nicht regulär, was ein Widerspruch zur Voraussetzung ist.


Also gilt $  [mm] \vert a_{11} \vert [/mm] > 0$.

Der erste Schritt der LR-Zerlegung ist durchführbar.



Aber weiter komme ich leider nicht und ich habe auch keinen weiteren Ansatz. Zumal ich nicht verstehe, warum Tipp (i) mir helfen sollte.




Würde mich für jede Hilfe freuen :-)









[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]

        
Bezug
L-R- Zerlegung ohne Zeilenver.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 06.11.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]