matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisLösungsmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Lösungsmenge
Lösungsmenge < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 11.11.2005
Autor: Chocbooty83

Wie bestimme ich die Lösungsmenge folgender Gleichungen

1.)    1/x-2>2
2. )   |x| < (kleiner und gleich) x-2
3.)    2(2x-3)<7x-9
4.)   (ln(x))²-7 ln(x) = -12

Also ich bin dann auf folgendes gekommen:

1) 1 > 2x - 4, 5 > 2x

2) unterscheidung der  Fälle (a): x < 0 und (b): x > 0
(a): -x < x - 2
(b): +x < x - 2
3) ausmultiplizieren, alles x auf eine Seite bringen
-----------
4) (lnx)(lnx - 7) = -12 = -3*4 = -4*3
also
x = e4 oder x = e3

doch bei der 4) bin ich irgendwie hängen geblieben und bräuchte eure hilfe, hab nämlich keine grossartige ahnung von ln fkt.

und ist das andere so richtig?



        
Bezug
Lösungsmenge: Antwort (bearbeitet!)
Status: (Antwort) fertig Status 
Datum: 10:50 Fr 11.11.2005
Autor: Karl_Pech

Hallo Chocbooty83,


> Wie bestimme ich die Lösungsmenge folgender Gleichungen
>
> 1.) [mm] $\frac{1}{x-2}>2$ [/mm]
> zu 1.) $1 > 2x - 4 [mm] \Rightarrow [/mm] 5 > 2x [mm] \Rightarrow [/mm] x < [mm] \frac{5}{2}$ [/mm]


Hier ist noch zu beachten, daß der linke Term der Ungleichung für $x = 2$ nicht definiert wäre. Für $x < 2$ wird der Term außerdem negativ. Damit müßte unsere Lösungsmenge so aussehen:


Also: [mm] $\mathbb{L} [/mm] := [mm] \left\{x|2

> 2.) [mm] $\left|x\right| \le [/mm] x-2$


Sei $p [mm] \in \mathbb{R}^+_0$. [/mm] Dann gilt: $p [mm] \le [/mm] p - 2 [mm] \Rightarrow [/mm] 0 [mm] \le [/mm] -2$. Widerspruch!


Und [mm] $\left|-p\right| [/mm] = p [mm] \le [/mm] -p - 2$. Das heißt eine positive Zahl müßte kleiner sein, als eine Negative. Widerspruch!

Also ist [mm] $\mathbb{L} [/mm] = [mm] \emptyset$. [/mm]


> 3.)    2(2x-3)<7x-9
> 3) ausmultiplizieren, alles x auf eine Seite bringen


[ok]


> 4.)   (ln(x))²-7 ln(x) = -12
>
> Also ich bin dann auf folgendes gekommen:
>  
>
> -----------
> 4) (lnx)(lnx - 7) = -12 = -3*4 = -4*3
> also
> $x = [mm] e^4$ [/mm] oder $x = [mm] e^3$ [/mm]


Prima! [daumenhoch]


> doch bei der 4) bin ich irgendwie hängen geblieben und
> bräuchte eure hilfe, hab nämlich keine grossartige ahnung
> von ln fkt.


Sei $k := [mm] \ln [/mm] x$. Dann erhalten wir eine quadratische Gleichung:


[mm] $k^2 [/mm] - 7k + 12 = 0$


Löse diese Gleichung nach k auf. In diesem Falle erhälst Du 2 Lösungen. Dann setzt Du das oben ein, und wendest die Exponentialfunktion an. Aber Du kennst die Lösungen ja bereits. :-)


Also: [mm] $\mathbb{L} [/mm] := [mm] \left\{x|x=e^3 \vee x = e^4\right\}$. [/mm]


Grüße
Karl
[user]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]