matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieProduktregel oder nicht?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Produktregel oder nicht?
Produktregel oder nicht? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel oder nicht?: partielle Integration, Produkt
Status: (Frage) beantwortet Status 
Datum: 11:37 Fr 21.01.2011
Autor: zzyzx

Aufgabe
Berechnen Sie die folgenden Integrale und geben Sie jeweils die benutzten Integrationsregeln an:
[mm] \integral_{a}^{b}{x^2*sin(x) dx}, [/mm]
[mm] \integral_{0}^{\wurzel{\bruch{\pi}{2}}}{x*cos(x^2) dx} [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Produktregel-234

Moin Leute,
wir hatten in der Vorlesung auch ein Beispiel zur partiellen Integration, dabei kam aber ein sehr viel einfacheres Ergebnis bei raus.
Wenn ich die Produktregel bei der ersten Aufgabe anwende, komme ich auf folgendes:

[mm] \integral_{a}^{b}{x^2*sin(x) dx}= [x^2*cos(x)]_{a}^{b} [/mm] - [mm] \integral_{a}^{b}{2x*cos(x) dx} [/mm]

das hilft mir aber absolut nicht weiter. Hab ich was falsch gemacht, oder seh ich die Lösung einfach nur nicht?

danke im voraus

        
Bezug
Produktregel oder nicht?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Fr 21.01.2011
Autor: schachuzipus

Hallo zzyzzx und [willkommenmr],

> Berechnen Sie die folgenden Integrale und geben Sie jeweils
> die benutzten Integrationsregeln an:
> [mm]\integral_{a}^{b}{x^2*sin(x) dx},[/mm]
>
> [mm]\integral_{0}^{\wurzel{\bruch{\pi}{2}}}{x*cos(x^2) dx}[/mm]
> Ich
> habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.onlinemathe.de/forum/Produktregel-234
>
> Moin Leute,
> wir hatten in der Vorlesung auch ein Beispiel zur
> partiellen Integration, dabei kam aber ein sehr viel
> einfacheres Ergebnis bei raus.
> Wenn ich die Produktregel bei der ersten Aufgabe anwende,
> komme ich auf folgendes:
>
> [mm]\integral_{a}^{b}{x^2*sin(x) dx}= [x^2*cos(x)]_{a}^{b}[/mm] - [mm]\integral_{a}^{b}{2x*cos(x) dx}[/mm]

Da ist ein VZF!

Es ist doch [mm]-\cos(x)[/mm] eine Stfk. zu [mm]\sin(x)[/mm]

Also (ohne Grenzen geschrieben):

[mm]\int\limits{x^2\cdot{}\sin(x) \ dx}=x^2\cdot{}(-\cos(x)) \ - \ \int\limits{2x(-\cos(x)) \ dx}[/mm]

[mm]=-x^2\cos(x)+2\int{x\cos(x) \ dx}[/mm]

Nun nochmal partielle Integration bemühen für das verbleibende Integral!


Für das andere Integral substituiere [mm]z=z(x):=x^2[/mm]


>
> das hilft mir aber absolut nicht weiter. Hab ich was falsch
> gemacht, oder seh ich die Lösung einfach nur nicht?
>
> danke im voraus

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]