matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieUneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Uneigentliches Integral
Uneigentliches Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Di 25.07.2006
Autor: Darkangel2

Aufgabe
Uneigentliches Integral
[mm] \integral_{1}^{\infty} x^r\, [/mm] dx              [mm] r\le \infty [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo nochmal.
Hätte da noch ein Problem:
Wir sollen auch das Integral lösen:
[mm] \integral_{1}^{\infty} x^r\, [/mm] dx              [mm] r\le \infty [/mm]

die Stammfunktion lautet ja:         1/rx^(r+1)
Hier hab ich jetzt das Problem, das ich zwei Variablen (a, r) habe und die Grenzen $ [mm] \integral_{1}^{\infty}. [/mm] $.
Wie komm ich hier zu einer Lösung.
Das Problem ist das die Klausur ne M.Choice ist und daher nur die richtige Antwort gilt.

Danke im Vorraus.

        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Di 25.07.2006
Autor: laryllan

Hallo erstmal,

Ich würde spontan sagen, dass das Ergebnis  [mm] \infty [/mm] ist.

Man könnte da eine entsprechende Fallunterscheidung machen:

1. Fall r  [mm] \le \infty [/mm] und r ist natürliche Zahl

Dieser Fall ist recht klar. Im kleinsten Fall (r =1) erhältst du ja eine Stammfunktion, die quadratisch ist. Diese ist sicher für positive Zahlen streng monoton (steigend). Für alle anderen, höheren Potenzen ist dies sicher auch der Fall. Der Bruch-Skalar vorneweg macht für x gegen undendlich sicherlich nicht viel aus, auch nicht bei hohen r.

Einziges Problem ist, wenn r tatsächlich "gleich" unendlich wäre. In diesem Fall wüsste ich jetzt auch keinen Rat; l'Hôpital`sche Regeln würden hier ggf. Sinn machen.


2. Fall: r  [mm] \le \infty [/mm] und r ist negative, ganze Zahl

Läuft ansich analog zum 1. Fall, auch hier wäre das Problem wenn r zufällig "gleich" - [mm] \infty [/mm]  wäre...


3. Fall: r  [mm] \le \infty [/mm] und r ist Bruch

Dies ist sicherlich ein wenig problematischer (man beachte hierbei die Klippe, dass die Stammfunktion von 1/x gerade ln(x) ist...).


Ich wüsste nicht, wie man da so allgemein im Rahmen einer multiple-choice-Klausur was richtiges ankreuzen kann/soll. Einzig wirklich etwas stärker überzeugendes Argument wäre die strenge Monotnonie der Funktionen bei x-Werten größer als 1.

Namárie,
sagt ein Lary, wo sich nun n Eis holt

Bezug
        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 26.07.2006
Autor: Sigrid

Hallo Darkangel,

> Uneigentliches Integral
>  [mm]\integral_{1}^{\infty} x^r\,[/mm] dx              [mm]r\le \infty[/mm]

Steht in der Aufgabenstellung wirklich [mm]r\le \infty[/mm]? Es sollte [mm]r < \infty[/mm] heißen.

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo nochmal.
>  Hätte da noch ein Problem:
> Wir sollen auch das Integral lösen:
>  [mm]\integral_{1}^{\infty} x^r\,[/mm] dx              [mm]r\le \infty[/mm]
>  
> die Stammfunktion lautet ja:         1/rx^(r+1)

Nicht ganz. Eine Stammfunktion ist für $ r [mm] \not= [/mm] -1 $  

$ F(x) = [mm] \bruch{1}{r+1}\ x^{r+1} [/mm] $

>  Hier hab ich jetzt das Problem, das ich zwei Variablen (a,
> r) habe und die Grenzen [mm]\integral_{1}^{\infty}. [/mm].
> Wie komm ich hier zu einer Lösung.

Es gilt für $ r [mm] \not= [/mm] -1 $  

[mm] \integral_{1}^{\infty} x^r\ dx [/mm] = $   [mm] \limes_{a\rightarrow\infty}( \bruch{1}{r+1}\ a^{r+1} [/mm] -  [mm] \bruch{1}{r+1})\ [/mm]  $

Jetzt betrachte mal verschiedene Werte für r, z.B. r=2, r=-2, r=0,5, r=-0,5. Dann bekommst du eine Idee, wann der Grenzwert existiert.

Gruß
Sigrid

>  Das Problem ist das die Klausur ne M.Choice ist und daher
> nur die richtige Antwort gilt.
>  
> Danke im Vorraus.


Bezug
        
Bezug
Uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mi 26.07.2006
Autor: Darkangel2

Hallo

Wenn ich für r (2 , -2 , 0.5,  -05) einsetzte und für a einen beliebigen grossen Wert einsetze, bekomme ich immer Werte >0, also müsste die Funtion unendlich sein oder?

Bezug
                
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 26.07.2006
Autor: Barncle

so du dunkler Engel! :)

Also eigentlich ist das doch nur halbso eine  Hexerei! :)

deine Stammfunktion ist also [mm] \bruch{x^{r+1}}{r+1} [/mm]
Wie du natürlich gleich siehst, existiert das ganze für r = -1 natürlich nicht, weil durch null darf man ja nicht dividieren.

also weiter wir schaun uns das jetzt mal genauer an. da steht:
[mm] \limes_{a\rightarrow\infty} \bruch{a^{r+1}}{r+1} [/mm] - [mm] \bruch{1}{r+1} [/mm]

nungut, für r > -1 konvergiert das ganze gegen [mm] \infty [/mm]
für r < -1 wird aus dem ganen [mm] \bruch{1}{r+1} [/mm] weil das a unter den Bruch wandert, und [mm] \bruch{1}{\infty} [/mm] = 0 ist

nun bleiben noch die Fälle, wo r = [mm] \infty [/mm] und r = [mm] -\infty [/mm] ist.. aba da bin ich leida auch überfragt... sry :)


Bezug
                        
Bezug
Uneigentliches Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Mi 26.07.2006
Autor: Darkangel2

Vielen Lieben Dank für eure Hilfe.
Ihr habt mir mein Leben gerettet.
Danke

Bezug
                
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 26.07.2006
Autor: Barncle

Sodala.. habs dochnoch so hinbekommen...

also für r = [mm] -\infty [/mm] kann man das ganze auch so anschreiben:
[mm] \bruch{1}{1-\infty} \bruch{1}{e^\infty} [/mm] - [mm] \bruch{1}{1-\infty} [/mm]
gut nun ist [mm] \bruch{1}{e^\infty} [/mm] = 0 und der Bruch danach auch 0 also kommt 0 raus.

für r = [mm] \infty [/mm] folgt nach Anwendung von de L'Hospital  [mm] \limes_{a\rightarrow\infty} a^\infty [/mm] also kommt [mm] \infty [/mm] raus!

hoff das stimmt so! ;) sollt aba passen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]