matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Ungleichungen
Ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 30.10.2004
Autor: maria

Ich habe ein Problem mit den folgenden Aufgaben. Ich finde einfach keinen Ansatz:

For the following inequalities describe  the set of solutions [mm] x\in \IR [/mm] (as the disjoint union of intervals) Ich übersetze den Satz so: Für die folgenden Ungleichungen beschreibe die Menge der Lösungen...(als die disjunkte Intervallvereinigung). Richtig so ungefähr???

(a)  |x-a| <  [mm] \varepsilon [/mm] with fixed [mm] a,\varepsilon \in \IR [/mm] , [mm] \varepsilon [/mm] > 0;
(b) || x | -2|  [mm] \le [/mm] 1;
(c) 1/x < [mm] 1/(x\pm1) [/mm]

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 So 31.10.2004
Autor: Hanno

Hallo Maria!

(a)  |x-a| <  $ [mm] \varepsilon [/mm] $ with fixed $ [mm] a,\varepsilon \in \IR [/mm] $ , $ [mm] \varepsilon [/mm] $ > 0;

Hier solltest du dir die Äquivalenz folgender Aussagen zu Nutze machen:
[mm] $|x|<\varepsilon\gdw -\varepsilon
(b) || x | -2|  $ [mm] \le [/mm] $ 1;

Hier brauchst du nur positive Werte von x zu betrachten und die dort gewonnen Erkenntnisse ins Negative übertragen, da x in Betragstrichen steht, das Vorzeichen also keine Rolle spielt. Fortfahren kannst du dann wie oben.

(c) 1/x < $ [mm] 1/(x\pm1) [/mm] $

Hier würde ich ein paar Fallunterscheidungen durchführen. Ich weiß nicht, ob es nicht noch einfacher geht, aber kompliziert sind die Fallunterscheidungen auch nicht.

Viel Erfolg!

Liebe Grüße,
Hanno




Bezug
        
Bezug
Ungleichungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 So 31.10.2004
Autor: maria

Danke für die Tips. Ich hoffe ich schaff es jetzt :-) Jedenfalls hast du mich schon ein Stückchen weitergebracht! Danke, danke, danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]