matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle AnalysisUngleichungen in R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis" - Ungleichungen in R
Ungleichungen in R < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Mo 27.11.2006
Autor: rotspawn

Aufgabe 1
Löse die folgenden Ungleichungen in R: |x-1|++1|>2  und |x-2|*|x+2|<1

Aufgabe 2
Zu a,b aus R mit a<b gibt es stets ein s aus [mm] R\Q [/mm] mit a<s<b. (Hinweis: Man besorge sich eine nat. Zahl n mit 1/n < b-a/Wurzel2 )

Ich habe keine Ahnung was Ich eigentlich machen muss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichungen in R: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mo 27.11.2006
Autor: wieZzZel


> Löse die folgenden Ungleichungen in R: |x-1|++1|>2  und
> |x-2|*|x+2|<1

KANN das sein, das du dich verschrieben hast???

|x-1|++1|>2 WAS soll das ++ heißen???

zu 2. ist 3. Binomische Formel

[mm] x^{2}-4<1 [/mm]
[mm] x^{2}<-3 [/mm]


-->keine Lösung für [mm] \IR[/mm]

Bezug
        
Bezug
Ungleichungen in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 27.11.2006
Autor: rotspawn

Aufgabe
Löse die folgenden Ungleichungen in R:
|x-1| + |x+1|>2

Ich habe mich vertippt vorher... Bitte kann mir jemand helfen Ich bin zu müde noch zu denken  :-))

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Bezug
                
Bezug
Ungleichungen in R: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mo 27.11.2006
Autor: M.Rex

Hallo

Zuallererst brauchst du eine Fallunterscheidung.

|x-1| + |x+1|>2

und zwar:

1) x+1<0 (Das heisst, auch, x-1<0)

Dann wird

|x-1| + |x+1|>2
zu -(x-1)+(-(x+1))>2
[mm] \gdw [/mm] -x+1-x-1>2
[mm] \gdw [/mm] -2x>2
[mm] \gdw [/mm] x<-1

Fall 2)
x-1>0 (Also auch x+1<0)

Dann wird

|x-1| + |x+1|>2
[mm] \gdw [/mm] x-1+x+1>2
[mm] \gdw [/mm] 2x>2
[mm] \gdw [/mm] x>2

Jetzt zum interessanten Fall 3)
-1<x<1

Dann ist ja
x-1<0, aber x+1>0

Das heisst,

|x-1| + |x+1|>2
[mm] \gdw [/mm] -(x-1)+x+1>2
[mm] \gdw [/mm] -x+1+x+1>2
[mm] \gdw [/mm] 0>2, was ja eine Falsche Aussage ist.

Also ist die Lösungsmenge:

[mm] \IL=\{x\in\IR/[-1;1]\} [/mm]

Marius



Bezug
                
Bezug
Ungleichungen in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:00 Di 28.11.2006
Autor: rotspawn

Ich habe versucht mit Fallunterscheidung zu machen und kamm raus x>1 und x>-1 . Ist das richtig???

Bezug
                        
Bezug
Ungleichungen in R: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 28.11.2006
Autor: M.Rex

Fast, schau dir mal meine Antwort drüber an.

Wahrscheinlich hast du bei -2x>2 und dem dann folgenden dividieren durch -2 das "drehen"des Ungleichungszeichens vergessen.

Marius

Bezug
                                
Bezug
Ungleichungen in R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Di 28.11.2006
Autor: rotspawn

Stimmt...Und denn 3 Fall habe Ich auch vergessen....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]