matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenähnliche matrizen, gleiche abb
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - ähnliche matrizen, gleiche abb
ähnliche matrizen, gleiche abb < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ähnliche matrizen, gleiche abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 12.01.2010
Autor: valoo

Aufgabe
Zeigen Sie, dass alle Q-linearen Abbildungen [mm] \phi: \IQ^{2}\to \IQ^{2} [/mm] durch die Matrizen [mm] M:=\pmat{ m & 0 \\ 0 & m } [/mm] und [mm] P:=\pmat{ 0 & p \\ 1 & q } [/mm] mit m,p,q [mm] \in \IQ [/mm] beschrieben werden.  

Man soll irgendwie zeigen können, dass wenn die Abbildung nicht von P beschrieben wird, sie von einem Vielfachen der Einheitsmatrix (also M) beschrieben wird.
Ehrlich gesagt habe ich kaum Ahnung, wie ich an die Aufgabe herangehen soll. Muss die Basis zu P irgendwie passend gewählt werden?
Sei [mm] B:=\{a,b\} [/mm] eine Basis von [mm] \IQ^{2}. [/mm] Muss ich mir angucken, was P hiermit macht? Oder mit den Linearkombinationen der Basis?
[mm] P*(\alpa*a+\beta*b)=\pmat{ 0 & p \\ 1 & q }*\vektor{\alpha*a_{1}+\beta*b_{1} \\ \alpha*a_{2}+\beta*b_{2}}=\vektor{\alpha*a_{2}+\beta*b_{2}\\ \alpha*p*a_{1}+\beta*p*b_{1}+\alpha*q*a_{2}+\beta*q*b_{2}} [/mm]
Wie kann ich zeigen, dass dies alles beschreibt bis auf das, was von M beschrieben wird?
Ist es nicht so, dass ein Endomorphismus von [mm] \IQ^{2} [/mm] die allgemeine Form
[mm] (x,y)\mapsto [/mm] (a*x+b*y,c*x+d*y) hat?
Ich weiß absolut nicht, wie ich weitervorgehen soll, geschweige denn, ob mein bisheriger Ansatz überhaupt richtig ist.

        
Bezug
ähnliche matrizen, gleiche abb: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Mi 13.01.2010
Autor: angela.h.b.


> Zeigen Sie, dass alle Q-linearen Abbildungen [mm]\phi: \IQ^{2}\to \IQ^{2}[/mm]
> durch die Matrizen [mm]M:=\pmat{ m & 0 \\ 0 & m }[/mm] und [mm]P:=\pmat{ 0 & p \\ 1 & q }[/mm]
> mit m,p,q [mm]\in \IQ[/mm] beschrieben werden.
> Man soll irgendwie zeigen können, dass wenn die Abbildung
> nicht von P beschrieben wird, sie von einem Vielfachen der
> Einheitsmatrix (also M) beschrieben wird.
> Ehrlich gesagt habe ich kaum Ahnung, wie ich an die Aufgabe
> herangehen soll. Muss die Basis zu P irgendwie passend
> gewählt werden?

Hallo,

ja.

Ich gehe davon aus, daß das Thema "Darstellungsmatrizen" prinzipiell klar ist.

Schauen wir uns P an.
Was erzählt uns die erste Spalte? Es gibt einen Vektor v, der nicht auf ein Vielfaches von sich selbst abgebildet wird.

Damit steht die Chose:

1. Fall:
es gibt einen Vektor v, der nicht auf ein Vielfaches von sich abgebildet wird.
Überlege Dir, daß v und f(v) in diesem Falle eine Basis sind, und daß die darstellende Matrix bzgl. dieser Basis P ist.

2.Fall:
jeder Vektor wird auf ein Vielfaches von sich selbst abgebildet.
Dann gilt das auch für die Basisvektoren [mm] v_1 [/mm] und [mm] v_2. [/mm]
Nun mußt Du Dir überlegen, warum sie auf dassselbe Vielfache abgebildet werden.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]