matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1chaotische Topologie,stetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - chaotische Topologie,stetig
chaotische Topologie,stetig < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

chaotische Topologie,stetig: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 03:12 Di 07.05.2013
Autor: theresetom

Aufgabe
Sei Y ein topologischer Raum und X eine nichtleere Menge. Welche Abbildungen X->Y sind stetig, wenn auf X die diskrete oder chaotische Topologie betrachtet wird.

Sei X eine Menge und [mm] \tau_1 [/mm] , [mm] \tau_2 [/mm] zwei Topologien auf X. Setze die Stetigkeit der identischen Abbildung auf X in Beziehung zur Vergleichbarkeit der beiden Topologien

Hi

-) X mit diskrete Topologie: [mm] \tau [/mm] = P(X) (Potenzmenge von X)

f stetig <=> [mm] \forall [/mm] B  [mm] \subset [/mm] Y offen: [mm] f^{-1} [/mm] (B) offen in X
X mit diskrete Topologie -> jede Teilmenge von X offen
=> alle Abbildungen f:X->Y stetg


-) X mit chaotische Topologie: [mm] \tau [/mm] = [mm] \{ \emptyset,X\} [/mm]
f stetig <=> [mm] \forall [/mm] B  [mm] \subset [/mm] Y offen: [mm] f^{-1} [/mm] (B) offen in X
[mm] f^{-1} [/mm] (B) offen in X <=> [mm] f^{-1} [/mm] = [mm] \emptyset [/mm] oder [mm] f^{-1} [/mm] (B) = X für alle B offen in Y.
WIe beschreib ich diese Abbildungen allgemein?


-)
[mm] \tau_1 [/mm] gröber als [mm] \tau_2 [/mm] ( [mm] dh.\tau_1 \subseteq \tau_2 [/mm] )
( alle offenen Mengen bez [mm] \tau_1 [/mm] auch offene Mengen bez. [mm] \tau_2) [/mm]
=>
Id:(X, [mm] \tau_2) [/mm] -> (X, [mm] \tau_1) [/mm]
x [mm] \to [/mm] x [mm] \forall [/mm] x [mm] \in [/mm] X
Id stetig: [mm] \forall [/mm] B [mm] \in \tau_1 [/mm]  in X => [mm] Id^{-1} [/mm] (B)=B [mm] \in \tau_2 [/mm]

<=
Sei Id:(X, [mm] \tau_2) [/mm] -> (X, [mm] \tau_1), [/mm] x [mm] \to [/mm] x [mm] \forall [/mm] x [mm] \in [/mm] X stetig.
also:  [mm] \forall [/mm] B [mm] \in \tau_1 [/mm]  in X => [mm] Id^{-1} [/mm] (B)=B [mm] \in \tau_2 [/mm]
d.h. [mm] \tau_1 \subseteq \tau_2 [/mm]

Analog
[mm] \tau_2 [/mm] gröber als [mm] \tau_1 [/mm] ( [mm] dh.\tau_2 \subseteq \tau_1 [/mm] )
<=>
Id:(X, [mm] \tau_1) [/mm] -> (X, [mm] \tau_2) [/mm]
x [mm] \to [/mm] x [mm] \forall [/mm] x [mm] \in [/mm] X
Id stetig: [mm] \forall [/mm] B [mm] \in \tau_2 [/mm]  in X => [mm] Id^{-1} [/mm] (B)=B [mm] \in \tau_1 [/mm]



        
Bezug
chaotische Topologie,stetig: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Do 09.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]