matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrainvarianter Unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - invarianter Unterraum
invarianter Unterraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invarianter Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Sa 22.04.2006
Autor: Tini21

kann mir jemand mit einfachen Worten erklären, was ein A-invarianter Unterraum von V ist? Was muss man nachweisen, um zu zeigen, dass es sich um einen A-invarianten Unterraum handelt?

        
Bezug
invarianter Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Sa 22.04.2006
Autor: DaMenge

Hi,

also A ist bestimmt eine quadratische Matrix, oder?

sei [mm] f_A [/mm] der zu A gehörende Endomorphismus und U ein Unterraum, dann ist U A-invariant bzw. [mm] f_A [/mm] -invariant wenn [mm] $f_A(U)\subseteq [/mm] U$, d.h. also wenn der Unterraum U wieder in sich selbst abgebildet wird.
(Was mit dem restlichen Raum passiert ist uninteressant)

Im [mm] $\IR^3$ [/mm] kann man sich das noch toll vorstellen, sei U eine Ebene durch den Ursprung, dann ist die Ebene f-invariant, wenn f die Ebene in sich selbst abbildet, also wenn alle Punkte der Ebene nach der Abbildung immernoch in der Ebene liegen.

Wenn du also ein U gegeben (oder gefunden) hast, musst du eben diese Eigenschaft überprüfen.

Hinweis: Wenn du eine Basis von U hast, kannst du diese zu einer Basis von ganz V erweitern, dann muss A bzgl dieser Basis eine bestimmte Form haben - das kannst du z.B [url=read?t=143025]HIER[/u] nachlesen.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]