matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - konvergenz und Grenzwert
konvergenz und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz und Grenzwert: Übung
Status: (Frage) beantwortet Status 
Datum: 17:12 Mi 09.01.2013
Autor: ellegance88

Aufgabe
Es sei [mm] (a_n)_n [/mm] eine Nullfolge und [mm] (b_n)_n [/mm] beschränkt. Zeigen Sie, dass [mm] (a_n*b_n)_n [/mm]
konvergent ist und bestimmen Sie den Grenzwert.

Dazu habe ich mal eine Frage.

Ich habe mal ein Satz gelesen, undzwar:

Es sei [mm] (a_n) [/mm]  eine Nullfolge und [mm] (b_n [/mm] ) sei beschränkt.

Dann gilt: [mm] \limes_{n \to \infty}(a_n [/mm] * [mm] b_n) [/mm] = 0

Mit diesem Satz ist ja es schon gezeigt? oder soll ich es beweisen? :S

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konvergenz und Grenzwert: Dein Beweis
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 09.01.2013
Autor: Loddar

Hallo ellegance!


> Mit diesem Satz ist ja es schon gezeigt? oder soll ich es
> beweisen?

Dies zu beweisen ist genau Deine Aufgabe.


Gruß
Loddar


Bezug
                
Bezug
konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 09.01.2013
Autor: ellegance88

Es sei [mm] \left| b_n \right|\le [/mm] c ( c > 0) für alle n [mm] \in [/mm] N und epsilon > 0 gegeben.

dann bestimmt man zu  [mm] \bruch{epsilon}{c} [/mm] einen Index [mm] n_0 [/mm] sodass gilt:

[mm] \left| a_n \right| [/mm] <  [mm] \bruch{epsilon}{c} [/mm] für alle n > [mm] n_0 [/mm]

und so ein [mm] n_0 [/mm] existiert ja weil [mm] a_n [/mm] eine Nullfolge ist? wäre das richtig?

Bezug
                        
Bezug
konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 09.01.2013
Autor: Marcel

Hallo,

> Es sei [mm]\left| b_n \right|\le[/mm] c ( c > 0) für alle n [mm]\in[/mm] N
> und epsilon > 0 gegeben.
>  
> dann bestimmt man zu  [mm]\bruch{epsilon}{c}[/mm] einen Index [mm]n_0[/mm]
> sodass gilt:
>  
> [mm]\left| a_n \right|[/mm] <  [mm]\bruch{epsilon}{c}[/mm] für alle n > [mm]n_0[/mm]
>  
> und so ein [mm]n_0[/mm] existiert ja weil [mm]a_n[/mm] eine Nullfolge ist?

und unter Beachtung, dass [mm] $\epsilon/c [/mm] > 0$ gilt.

> wäre das richtig?

Ja. Denn dann folgt für alle $n > [mm] n_0$ [/mm] sodann
[mm] $$|a_n*b_n-0|=|a_n|*|b_n| \le \frac{\epsilon}{c}*c=\epsilon\,.$$ [/mm]

P.S. Es geht auch mit dem Sandwichkriterium:
$$0 [mm] \le |a_n*b_n|=|a_n|*|b_n| \le c*|a_n|$$ [/mm]
benutzen sowie die Stetigkeit des Betrages an der Stelle [mm] $0\,.$ [/mm]
(Anders gesagt: [mm] $x_n \to [/mm] 0 [mm] \iff |x_n| \to |0|=0\,.$) [/mm]

P.P.S Das [mm] $\epsilon$ [/mm] schreibst Du mit dem FE so: [mm] [nomm]$\epsilon$[/nomm]. [/mm]

Gruß,
  Marcel

Bezug
                                
Bezug
konvergenz und Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mi 09.01.2013
Autor: ellegance88

okay danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]