matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumeuntervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - untervektorräume
untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

untervektorräume: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 01.12.2008
Autor: ulla

Aufgabe
Seien U und W Unterräume eines Vektorraunes V. Beweisen sie:
i) U+W ist ein Unterraum von V
ii) U [mm] \cap [/mm] W ist ein Untervektorraum von V
iii) [mm] U\cup [/mm] W ist genau dann ein Untervektorraum von V, wenn gilt [mm] U\subset [/mm] W oder [mm] W\subset [/mm] U

Hallo
ich bin mir nicht ganz sicher wie ich die Aufgabe lösen soll. Bei der i) denke ich mal dass ich die Kriterien für den Unterraum anwende. Also :
[mm] U\not= \emptyset [/mm]
[mm] u_{1} [/mm] + [mm] u_{2}\in [/mm] U und [mm] w_{1} [/mm] + [mm] w_{2}\in [/mm] W
[mm] \lambda*u \in [/mm] U  und [mm] \lambda [/mm] * w [mm] \in [/mm] W
aus diesen drei Kriterien folgt, dass U+W Untervektorraum
Bei der ii) und iii) weiß ich nicht wie ich vorgehen soll, kann mir jemand helfen?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 01.12.2008
Autor: angela.h.b.


> Seien U und W Unterräume eines Vektorraunes V. Beweisen
> sie:
>  i) U+W ist ein Unterraum von V
>  ii) U [mm]\cap[/mm] W ist ein Untervektorraum von V
>  iii) [mm]U\cup[/mm] W ist genau dann ein Untervektorraum von V,
> wenn gilt [mm]U\subset[/mm] W oder [mm]W\subset[/mm] U
>  Hallo
> ich bin mir nicht ganz sicher wie ich die Aufgabe lösen
> soll. Bei der i) denke ich mal dass ich die Kriterien für
> den Unterraum anwende. Also :
>  [mm]U\not= \emptyset[/mm]
>  [mm]u_{1}[/mm] + [mm]u_{2}\in[/mm] U und [mm]w_{1}[/mm] + [mm]w_{2}\in[/mm]
> W
>  [mm]\lambda*u \in[/mm] U  und [mm]\lambda[/mm] * w [mm]\in[/mm] W
> aus diesen drei Kriterien folgt, dass U+W Untervektorraum

Hallo,

ja, mithilfe dieser tatsachen kannst Du schnell zeigen, daß U+W ein UVR von V ist.

Auch bei der ii) mußt Du mit den UR_Kriterien arbeiten.

Die iii) hat zwei Richtungen:

a) [mm]U\cup[/mm] W  ist UVR  ==>  [mm]U\subset[/mm] W oder [mm]W\subset[/mm] U
b) [mm]U\subset[/mm] W oder [mm]W\subset[/mm] U ==>  [mm]U\cup[/mm] W  ist UVR

b) ist nicht der Rede wert.

a) konntest Du zeigen verschen, indem Du annimmst, daß  [mm]U\cup[/mm] W ein UVR  ist, es aber ein Element x gibt, welches in U \ W liegt.

Gruß v. Angela


>  Bei der ii) und iii) weiß ich nicht wie ich vorgehen soll,
> kann mir jemand helfen?
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]