matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieBorelsche Sigma-Algebra 2
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Borelsche Sigma-Algebra 2
Borelsche Sigma-Algebra 2 < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borelsche Sigma-Algebra 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:48 Fr 10.11.2017
Autor: Reynir

Hi,
ich setze hier meinen ersten Thread fort.
Eine weitere Frage, die sich mir in dem Bereich stellt und der Anlass zur ersten war ist die, dass man sogar sagen kann, dass der Ring der Figuren [mm] $F^n$, [/mm] also aller endlichen Quadervereinigungen die Borelsche Sigma-Algebra erzeugt. Ich habe die Inklusion [mm] $\subset$ [/mm] gezeigt, aber bin an [mm] $\sigma(offene [/mm] Mengen) [mm] \supset \sigma(F^n)$ [/mm] gescheitert. Da wir als Quader alle beliebigen achsenparallelen Quader zugelassen hatten, wusste ich nicht, wie ich das zeigen soll.
Viele Grüße
Reynir

        
Bezug
Borelsche Sigma-Algebra 2: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Fr 10.11.2017
Autor: Gonozal_IX

Hiho,

es gilt [mm] $F_n \subseteq \sigma(\text{'offene Mengen'})$ [/mm] und daraus folgt sofort [mm] $\sigma(F_n) \subseteq \sigma(\text{'offene Mengen'})$. [/mm]

Dass die erste Inklusion gilt, zeigt man einfach direkt, indem man nachweist, dass alle Quaderformen in [mm] $\sigma(\text{'offene Mengen'\})$ [/mm] liegen.
Dann hast du schon mal sowas wie [mm] $(\text{'alle Quaderformen'}) \subseteq \sigma(\text{'offene Mengen'})$. [/mm]

Da [mm] $F_n$ [/mm] der Ring dieser Quaderformen ist und damit nur aus Mengenoperationen gebildet wird, die auch in einer Sigma-Algebra erlaubt sind, bleibt dieser auch vollständig in der Sigma-Algebra und du bekommst [mm] $F_n \subseteq \sigma(\text{'offene Mengen'})$ [/mm] woraus die gewünschte Eigenschaft folgt.

Dass alle Quaderformen in der Sigma-Algebra liegen, ist zu zeigen, das ist aber (wie in der anderen Fragestellung angemerkt) annähernd trivial.

Mal als Beispiel in [mm] $\IR$ [/mm] wo die Quader ja Intervalle sind: Offene Intervalle sind trivial in den offenen Mengen enthalten.
Geschlossene Intervalle bekommst du dann per $[a,b] = [mm] \bigcap_{n \in \IN} \left(a - \frac{1}{n},b+\frac{1}{n}\right)$ [/mm]

Halboffene etc analog.

Gruß,
Gono.

Bezug
                
Bezug
Borelsche Sigma-Algebra 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 11.11.2017
Autor: Reynir

Hallo Gono,
vielen Dank für deine Antwort.
Ich muss jetzt mal ganz blöd fragen, an welche Sorten von Quadern hast du gedacht, sprich halboffen, abgeschlossen und offen? Weil bei uns in der Vorlesung war ein Quader als kartesisches Produkt nicht näher definierter Intervalle definiert. Es dürfte demnach auch so etwas, wie [mm] $I_1\times ...\times \left(a_i,b_i\right)\times...\times \left[a_j,b_j\right]\times ...\times I_n$ [/mm] als achsenparalleler Quader gelten, oder? Ändert das was an der Beweisführung oder geht man da genau so vor?

Bezug
                        
Bezug
Borelsche Sigma-Algebra 2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Sa 11.11.2017
Autor: Gonozal_IX

Hiho,

> an welche Sorten von Quadern hast du gedacht, sprich halboffen, abgeschlossen und offen?

Jo, an diese. Wobei ich persönlich aus praktischen Gründen die halboffenen bevorzuge :-)

> Weil bei uns in der Vorlesung war ein Quader als kartesisches Produkt nicht näher definierter Intervalle definiert. Es dürfte demnach auch so etwas, wie [mm]I_1\times ...\times \left(a_i,b_i\right)\times...\times \left[a_j,b_j\right]\times ...\times I_n[/mm] als achsenparalleler Quader gelten, oder?

Also wenn [mm] I_1 [/mm] und [mm] I_n [/mm] Intervalle sind (egal was für welche) dann ja.

> Ändert das was an der Beweisführung oder geht man da genau so vor?

Das ändert gar nichts. Jeder achsenparallele Quader lässt sich als Schnitt von abzählbar vielen offenen Quadern darstellen. Egal ob da offene, geschlossene, halboffene oder gemischte Intervalle drin vorkommen.

Gruß,
Gono


Bezug
                                
Bezug
Borelsche Sigma-Algebra 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 18.11.2017
Autor: Reynir

Hallo Gono,
auch hier vielen Dank für deine Antwort.
Viele Grüße
Reynir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]