matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-100stellen im Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - 0stellen im Polynom
0stellen im Polynom < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

0stellen im Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Do 06.05.2010
Autor: Eisfisch

Ich habe eine Funktion,
    
f(x) =  [mm] \bruch{1}{2}x^{4} [/mm]  -   [mm] x^{3} [/mm]   +   [mm] 2x^{2} [/mm]   -   5
    
für die ich die Schnittpunkte mit der y-Achse suche.  
Leider habe ich keine Idee, wie ich da vorankomme.
  
Substitution? z=x²? Nun, da habe ich ja noch den Ausdruck x³.
Polynomdivision? Ja, was denn wodurch?
  
Ich bitte euch um Hilfe.
Eisfisch
  

        
Bezug
0stellen im Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Do 06.05.2010
Autor: angela.h.b.


> Ich habe eine Funktion,
>
> f(x) =  [mm]\bruch{1}{2}x^{4}[/mm]  -   [mm]x^{3}[/mm]   +   [mm]2x^{2}[/mm]   -   5
>
> für die ich die Schnittpunkte mit der y-Achse suche.  

Hallo,

das ist eine ziemlich einfache Übung: auf der y-Achse liegen die Punkte, für die x=0 ist.
Der Punkt, den Du suchst, ist also P(0|f(0)).

Gruß v. Angela

Bezug
        
Bezug
0stellen im Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Do 06.05.2010
Autor: Eisfisch


> Ich habe eine Funktion,
>
> f(x) =  [mm]\bruch{1}{2}x^{4}[/mm]  -   [mm]x^{3}[/mm]   +   [mm]2x^{2}[/mm]   -   5
>
> für die ich die Schnittpunkte mit der x-Achse  suche.  
> Leider habe ich keine Idee, wie ich da vorankomme.
>
> Substitution? z=x²? Nun, da habe ich ja noch den Ausdruck
> x³.
> Polynomdivision? Ja, was denn wodurch?
>
> Ich bitte euch um Hilfe.
> Eisfisch
>  

Danke, Angela.
Ich habe Quatsch geschrieben, oben im Zitat korrigiert: Ich such den Schnittpunkte mit der x-Asche, d.h. f(x)=0

Danke im Voraus  
Eisfisch


Bezug
                
Bezug
0stellen im Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Do 06.05.2010
Autor: Stefan-auchLotti

Hi,

bist du sicher, dass du die NS genau dieses Polynomes bestimmen musst/willst?

Es gibt leider keine andere Möglichkeit als das hier:

[]Lösung von Gleichungen 4. Grades

Stefan.

Bezug
                        
Bezug
0stellen im Polynom: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Do 06.05.2010
Autor: Eisfisch

Vielen Dank für die Antwort/en.

Ja, es war schon die angegebene Funktion zu diskutieren und die Nullstellen hatten wir grafisch bestimmt, aber beim Berechnen hakte es dann.
Grafisch kamen da zwei Nullstellen bei ca. -1,1 und +1,9 heraus, aber ...
nunja, die Berechnung nach/über Formeln bei der biquadratischen Lösung ist auch nicht ohne Abschreib-/Tipp-/Rechenfehlerpotenzial.

Vielen Dank an die zwei Hinweisgeber.
Eisfisch


Bezug
                                
Bezug
0stellen im Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:47 Fr 07.05.2010
Autor: Peter_Pein

Das ist ja 'ne Arbeit für jemanden, der Vater und Mutter erschlagen hat...
Deshalb hier die Lösung, die Mathematica auswirft:
[mm]x=\frac{1}{6} \left(3-\sqrt{3 \left(-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}\right)}-\sqrt{-30+156 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}-3 2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}+54 \sqrt{\frac{3}{-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}}}}\right)\lor x=\frac{1}{6} \left(3-\sqrt{3 \left(-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}\right)}+\sqrt{-30+156 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}-3 2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}+54 \sqrt{\frac{3}{-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}}}}\right)\lor x=\frac{1}{6} \left(3+\sqrt{3 \left(-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}\right)}-i \sqrt{3 \left(10-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}+18 \sqrt{\frac{3}{-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}}}\right)}\right)\lor x=\frac{1}{6} \left(3+\sqrt{3 \left(-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}\right)}+\sqrt{-30+156 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}-3 2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}-54 \sqrt{\frac{3}{-5-52 \sqrt[3]{\frac{2}{241+9 \sqrt{1585}}}+2^{2/3} \sqrt[3]{241+9 \sqrt{1585}}}}}\right)[/mm]

oder numerisch (nach Realteil geordnet):
1: -1.14651204368644191654478
2: 0.72597183032503517320383-2.14943272376172871117702 I
3: 0.72597183032503517320383+2.14943272376172871117702 I
4: 1.69456838303637157013712


Gruß,
Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]