matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreAbb. bijektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Abb. bijektiv
Abb. bijektiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abb. bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Fr 07.09.2012
Autor: ollimorphismus

Hallo,
oft werden Indizes verwendet bei Familien von Mengen, ([]hier)
[mm] I\to [/mm] A, [mm] i\mapsto a_i, [/mm]
Nun meine Fragen:
Wenn [mm] I=A=\IN [/mm] ist, also [mm] a_i\in\IN, [/mm] kann ich dann folgern, dass die Abb bijektiv ist, denn
- Injektiv: [mm] a_i [/mm] = [mm] a_j \Rightarrow [/mm] i=j ?
- surjektiv: nach Definition, dann [mm] a_i \Rightarrow \exists i\in\IN [/mm] ?

Wenn ja, ist doch [mm] \IN\times\IN\to\IN, [/mm] durch das diagonale Anordnen bijektiv.
Wäre dann induktiv dies hier mit [mm] I_k [/mm] = [mm] \IN, I_1\times...\times I_n\to\IN, (i_1,...,i_n)\mapsto a_{i_1...i_n} [/mm] auch bijektiv?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abb. bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Fr 07.09.2012
Autor: hippias


> Hallo,
>  oft werden Indizes verwendet bei Familien von Mengen,
> ([]hier)
>  
> [mm]I\to[/mm] A, [mm]i\mapsto a_i,[/mm]
>  Nun meine Fragen:
>  Wenn [mm]I=A=\IN[/mm] ist, also [mm]a_i\in\IN,[/mm] kann ich dann folgern,
> dass die Abb bijektiv ist, denn
>  - Injektiv: [mm]a_i[/mm] = [mm]a_j \Rightarrow[/mm] i=j ?
>  - surjektiv: nach Definition, dann [mm]a_i \Rightarrow \exists i\in\IN[/mm]
> ?

Beide Male, Nein: Betrachte [mm] $i\mapsto 2+(-1)^{i}$. [/mm] Diese Abb. [mm] $:\IN\to \IN$ [/mm] ist weder injektiv noch surjektiv.

>  
> Wenn ja, ist doch [mm]\IN\times\IN\to\IN,[/mm] durch das diagonale
> Anordnen bijektiv.
>  Wäre dann induktiv dies hier mit [mm]I_k[/mm] = [mm]\IN, I_1\times...\times I_n\to\IN, (i_1,...,i_n)\mapsto a_{i_1...i_n}[/mm]
> auch bijektiv?
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Abb. bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Fr 07.09.2012
Autor: ollimorphismus

hmm, und wenn man fordet [mm] a_i \not= a_j, [/mm] für [mm] i\not= [/mm] j?

Bezug
                        
Bezug
Abb. bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Fr 07.09.2012
Autor: schachuzipus

Hallo ollimorphismus,


> hmm, und wenn man fordet [mm]a_i \not= a_j,[/mm] für [mm]i\not=[/mm] j?

Also eine Abb. [mm]f:\IN\to\IN[/mm] mit [mm]i\mapsto a_i=f(i)[/mm], so dass für [mm]i\neq j[/mm] dann [mm]a_i\neq a_j[/mm] ist?!

Na, solch eine Abb. sollte doch injektiv sein, das forderst du ja mit [mm]a_i\neq a_j[/mm], falls [mm]i\neq j[/mm]

Aber surjektiv ist das doch i.A. nicht.

Schicke jede Zahl [mm]i[/mm] auf ihr Doppeltes oder ihr Quadrat ...

Gruß

schachuzipus


Bezug
                                
Bezug
Abb. bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Fr 07.09.2012
Autor: ollimorphismus

Okay, aber wie bekomm ich die Abbildung surjektiv, muss man dafür [mm] a_i [/mm] immer explizit kennen?

Bezug
                                        
Bezug
Abb. bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 So 09.09.2012
Autor: fred97


> Okay, aber wie bekomm ich die Abbildung surjektiv, muss man
> dafür [mm]a_i[/mm] immer explizit kennen?

Eine injektive Abb. $ [mm] f:\IN\to\IN [/mm] $ kann surjektiv sein, muß aber nicht.

f(i)=i ist surjektiv,

f(i)=i+1 ist nicht surjektiv

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]