matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildungsmatrix einer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Abbildungsmatrix einer
Abbildungsmatrix einer < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix einer: Lin. Abbildung
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 16.09.2009
Autor: stowoda

Aufgabe
Seien [mm] \overrightarrow{a},\overrightarrow{b} [/mm] beliebige Vektoren aus [mm] \IR^3, e_1,e_2 [/mm] die ersten beiden Einheitsvektoren aus [mm] \IR^3. [/mm]
Betrachte die Abbildung [mm] $\overrightarrow{f}_{\overrightarrow{a},\overrightarrow{b}} [/mm] = [mm] (\overrightarrow{a}*\overrightarrow{x})e_1 +(\overrightarrow{b}*\overrightarrow{x})e_2, [/mm] für [mm] \overrightarrow{x} \in \IR^3.$ [/mm]

a) Gebe [mm] M^e_e(\overrightarrow{f}) [/mm] an.

Hallo,

ich habe Probleme bei der Darstellung der Abbildung..
Wie sieht die implizite Darstellung aus?

Etwa so? :

[mm] $\overrightarrow{f}_{\overrightarrow{a},\overrightarrow{b}}(\overrightarrow{x}) =\vektor{a_x \\ a_y \\a_z}*\vektor{x \\ y \\ z}*\vektor{1 \\0 \\ 0}+\vektor{b_x \\ b_y \\b_z}*\vektor{x \\ y \\ z}*\vektor{0 \\1\\ 0} [/mm] = [mm] \vektor{a_x*x + a_y*y +a_z*z \\ 0 \\0}+\vektor{0\\ b_x*x + b_y*y +b_z*z \\0}=\vektor{a_x*x + a_y*y +a_z*z\\ b_x*x + b_y*y +b_z*z \\0} [/mm]

        
Bezug
Abbildungsmatrix einer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mi 16.09.2009
Autor: angela.h.b.


> Seien [mm]\overrightarrow{a},\overrightarrow{b}[/mm] beliebige
> Vektoren aus [mm]\IR^3, e_1,e_2[/mm] die ersten beiden
> Einheitsvektoren aus [mm]\IR^3.[/mm]
> Betrachte die Abbildung
> [mm]\overrightarrow{f}_{\overrightarrow{a},\overrightarrow{b}} = (\overrightarrow{a}*\overrightarrow{x})e_1 +(\overrightarrow{b}*\overrightarrow{x})e_2, für \overrightarrow{x} \in \IR^3.[/mm]
>  
> a) Gebe [mm]M^e_e(\overrightarrow{f})[/mm] an.
>  Hallo,
>
> ich habe Probleme bei der Darstellung der Abbildung..
>  Wie sieht die implizite Darstellung aus?
>  
> Etwa so? :
>  
> [mm]$\overrightarrow{f}_{\overrightarrow{a},\overrightarrow{b}}(\overrightarrow{x}) =[\vektor{a_x \\ a_y \\a_z}*\vektor{x \\ y \\ z}]*\vektor{1 \\0 \\ 0}+[\vektor{b_x \\ b_y \\b_z}*\vektor{x \\ y \\ z}]*\vektor{0 \\1\\ 0}[/mm]
> = [mm]\vektor{a_x*x + a_y*y +a_z*z \\ 0 \\0}+\vektor{0\\ b_x*x + b_y*y +b_z*z \\0}=\vektor{a_x*x + a_y*y +a_z*z\\ b_x*x + b_y*y +b_z*z \\0}[/mm]

Hallo,

ja, das ist richtig so.

Eine implizite Darstellung ist das allerdings nicht.

Gruß v. Angela

>  


Bezug
                
Bezug
Abbildungsmatrix einer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 16.09.2009
Autor: stowoda

Ahja, die Klammern. Danke.

Wieso das keine implizite Darstellung ist will ich mir mal nicht den Kopf zerbrechen, obwohl es mich doch interessieren würde..

Auf dieses Ergebnis komme ich:

[mm] $M^e_e(\overrightarrow{f})=\pmat{ a_x & a_y & a_z \\ b_x & b_y & b_z \\ 0 & 0 & 0} [/mm]

Bezug
                        
Bezug
Abbildungsmatrix einer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 16.09.2009
Autor: angela.h.b.


> Ahja, die Klammern. Danke.
>  
> Wieso das keine implizite Darstellung ist will ich mir mal
> nicht den Kopf zerbrechen, obwohl es mich doch
> interessieren würde..

Hallo,

guck z.B. []da.

>
> Auf dieses Ergebnis komme ich:
>  
> [mm]$M^e_e(\overrightarrow{f})=\pmat{ a_x & a_y & a_z \\ b_x & b_y & b_z \\ 0 & 0 & 0}[/mm]

Ja, genau.

Gruß v. Angela

>  


Bezug
                                
Bezug
Abbildungsmatrix einer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Do 17.09.2009
Autor: stowoda

Danke :)

Bezug
        
Bezug
Abbildungsmatrix einer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Do 17.09.2009
Autor: stowoda

Aufgabe
[mm] a=(\overrightarrow{a}_1,\overrightarrow{a}_2,\overrightarrow{a}_3) [/mm]

mit: [mm] \overrightarrow{a}^T_1=(1,1,0), \overrightarrow{a}^T_2=(1,0,1),\overrightarrow{a}^T_3=(0,1,1) [/mm]



Es sei [mm] \overrightarrow{f} [/mm] eine lineare Abbildung [mm] \IR^3\to\IR^3 [/mm] mit [mm] \overrightarrow{f}(\overrightarrow{a}_1)=2\overrightarrow{a}_1,\overrightarrow{f}(\overrightarrow{a}_2)=3\overrightarrow{a}_2,\overrightarrow{f}(\overrightarrow{a}_3)=-4\overrightarrow{a}_3 [/mm]

Gebe [mm] M^a_a(\overrightarrow{f}) [/mm] an

Hallo, da es sich um die selbe Thematik handelt, fand ich es schade ein neues Thema zu eröffnen. Daher hänge ich es hier an.

Bekanntlich, stehen in den Zeilen der Abbildungsmatrix [mm] M^a_b [/mm] die Bilder [mm] \overrightarrow{f}(a) [/mm] .. der Basisvektoren von a [mm] =(a_1,a_2,a_3), [/mm] als Linearkombination der Basis [mm] b=(b_1,b_2,b_3). [/mm]

Gilt dann für [mm] M^a_a(\overrightarrow{f}), [/mm] b = a und aus dem oben genannten allgemeinen Fall wird ein Spezialfall für den beide Basen gleich sind? (Ist das Wort Isomorphismus hier angebracht?)




Bezug
                
Bezug
Abbildungsmatrix einer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Do 17.09.2009
Autor: angela.h.b.


>
> [mm]a=(\overrightarrow{a}_1,\overrightarrow{a}_2,\overrightarrow{a}_3)[/mm]
>
> mit: [mm]\overrightarrow{a}^T_1=(1,1,0), \overrightarrow{a}^T_2=(1,0,1),\overrightarrow{a}^T_3=(0,1,1)[/mm]
>  
>
>
> Es sei [mm]\overrightarrow{f}[/mm] eine lineare Abbildung
> [mm]\IR^3\to\IR^3[/mm] mit
> [mm]\overrightarrow{f}(\overrightarrow{a}_1)=2\overrightarrow{a}_1,\overrightarrow{f}(\overrightarrow{a}_2)=3\overrightarrow{a}_2,\overrightarrow{f}(\overrightarrow{a}_3)=-4\overrightarrow{a}_3[/mm]
>  
> Gebe [mm]M^a_a(\overrightarrow{f})[/mm] an
>  Hallo, da es sich um die selbe Thematik handelt, fand ich
> es schade ein neues Thema zu eröffnen. Daher hänge ich es
> hier an.
>  
> Bekanntlich, stehen in den Zeilen der Abbildungsmatrix
> [mm]M^a_b[/mm] die Bilder [mm]\overrightarrow{f}(a)[/mm] .. der Basisvektoren
> von a [mm]=(a_1,a_2,a_3),[/mm] als Linearkombination der Basis
> [mm]b=(b_1,b_2,b_3).[/mm]

Genau. Bekanntlich ist das so.

>  
> Gilt dann für [mm]M^a_a(\overrightarrow{f}),[/mm] b = a und aus dem
> oben genannten allgemeinen Fall wird ein Spezialfall für
> den beide Basen gleich sind?

Ja.


> (Ist das Wort Isomorphismus
> hier angebracht?)

Kommt drauf an, wie Du es zu verwenden gedenkst.  Daraus, daß Du f bezüglich zweier gleicher Basen darstellst, kannst Du jedenfalls nicht darauf schließen, daß f ein Isomorphismus ist.

(Hier ist's aber trotzdem einer:
die darstellende Matrix ist quadratisch und hat vollen Rang.
Die Basen spielen hierfür aber keine Rolle. Wählst Du andere Basen, dann bleibt die Abbildung trotzdem ein Isomorphismus. Es andert sich ja nicht die Abbildung, sondern lediglich ihre Darstellung.

Und nochwas: nichtquadratische Matrizen können keinen Isomorphismus darstellen.)

Gruß v. Angela

Bezug
                        
Bezug
Abbildungsmatrix einer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Do 17.09.2009
Autor: stowoda

Ok, vielen Dank.


[mm] M^a_a(\overrightarrow{f}) [/mm] :

Ich stelle also die BIlder der Basisvektoren der Basis a, als Lin.Komb der Basis a dar:


[mm] x_1*\vektor{1 \\ 1\\0}+y_1*\vektor{1 \\ 0\\1}+z_1*\vektor{0 \\ 1\\1}=\vektor{2 \\ 2\\0} [/mm]
[mm] \vektor{x_1 \\ y_1\\z_1}=\vektor{1 \\ 0\\0} [/mm]

[mm] x_2*\vektor{1 \\ 1\\0}+y_2*\vektor{1 \\ 0\\1}+z_2*\vektor{0 \\ 1\\1}=\vektor{3 \\ 0\\3} [/mm]
[mm] \vektor{x_2 \\ y_2\\z_2}=\vektor{0 \\ 3\\0} [/mm]

[mm] x_3*\vektor{1 \\ 1\\0}+y_3*\vektor{1 \\ 0\\1}+z_3*\vektor{0 \\ 1\\1}=\vektor{0 \\ -4\\-4} [/mm]
[mm] \vektor{x_3 \\ y_3\\z_3}=\vektor{0 \\ 0\\-4} [/mm]

Dann wäre [mm] $M^a_a(\overrightarrow{f})=\pmat{ 1 & 0&0 \\ 0 & 3&0\\0&0&-4 }$ [/mm]

Oder? Hmm..

Bezug
                                
Bezug
Abbildungsmatrix einer: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Do 17.09.2009
Autor: angela.h.b.


> Ok, vielen Dank.
>  
>
> [mm]M^a_a(\overrightarrow{f})[/mm] :
>
> Ich stelle also die BIlder der Basisvektoren der Basis a,
> als Lin.Komb der Basis a dar:
>  
>
> [mm]x_1*\vektor{1 \\ 1\\0}+y_1*\vektor{1 \\ 0\\1}+z_1*\vektor{0 \\ 1\\1}=\vektor{2 \\ 2\\0}[/mm]
>  
> [mm]\vektor{x_1 \\ y_1\\z_1}=\vektor{1 \\ 0\\0}[/mm]
>  
> [mm]x_2*\vektor{1 \\ 1\\0}+y_2*\vektor{1 \\ 0\\1}+z_2*\vektor{0 \\ 1\\1}=\vektor{3 \\ 0\\3}[/mm]
>  
> [mm]\vektor{x_2 \\ y_2\\z_2}=\vektor{0 \\ 3\\0}[/mm]
>  
> [mm]x_3*\vektor{1 \\ 1\\0}+y_3*\vektor{1 \\ 0\\1}+z_3*\vektor{0 \\ 1\\1}=\vektor{0 \\ -4\\-4}[/mm]
>  
> [mm]\vektor{x_3 \\ y_3\\z_3}=\vektor{0 \\ 0\\-4}[/mm]
>  
> Dann wäre [mm]M^a_a(\overrightarrow{f})=\pmat{ 1 & 0&0 \\ 0 & 3&0\\0&0&-4 }[/mm]
>  
> Oder? Hmm..

Hallo,

welcher teufel Dich für die 1. Spalte geritten hat, weiß ich ja nicht. Der Rest ist richtig - aber ziemlich unpraktisch eingefädelt.

Da stand doch

>>>  $ [mm] \overrightarrow{f}(\overrightarrow{a}_1)=2\overrightarrow{a}_1,\overrightarrow{f}(\overrightarrow{a}_2)=3\overrightarrow{a}_2,\overrightarrow{f}(\overrightarrow{a}_3)=-4\overrightarrow{a}_3 [/mm] $.

Das ist doch mundgerecht serviert. Du kannst bequem ablesen, das Wievielfache von [mm] \vec{a_1} [/mm] der vektor [mm] f(\vec{a_1}) [/mm] ist, die anderen genauso.

Den Weg über die Standardbasis brauchst Du hier nicht - obgleich er stimmt.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]