matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAbgeschlossen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Abgeschlossen
Abgeschlossen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:58 Fr 06.05.2005
Autor: Tito

Hallo

Meine Aufgabe ist:

Seien a,b [mm] \in \IR [/mm] a < b , X:= C([a,b]) versehen mit der Supremumsnorm erzeugten Metrik:

d(f,g):= [mm] \sup_{x \in [a,b]} [/mm] |f(x) - g(x)| für f,g [mm] \in [/mm] X

Untersuche B auf Abgeschlossenheit
B:= {f [mm] \in [/mm] X : [mm] \forall x\in [/mm] [a,b] : 0 [mm] \le [/mm] f(x) [mm] \le [/mm] 1 und [mm] \exists \alpha [/mm] , [mm] \beta [/mm] : [mm] \forall [/mm] x [mm] \in [/mm] [a,b] : f(x)= [mm] \alpha [/mm] + [mm] \beta [/mm] x}

Ich hab das so gemacht, weiß aber nicht ob das blödsinn ist:

Also:  Sei f [mm] \in [/mm] B, dann wähle eine Funktionenfolge [mm] (f_k)_{k \in \IN} [/mm] aus B die gleichmäßig gegen f konvergiert (ich hoffe das kann ich einfach so sagen), [mm] \Rightarrow[/mm]  [mm] \limes_{k\rightarrow\infty} \sup_{x \in [a,b]} |f_k(x) - f(x)| = 0 [/mm] [mm] \forall [/mm] x [mm] \in [/mm] [a,b], das heißt [mm] \limes_{k\rightarrow\infty} f_k(x)=f(x) \in [/mm] B [mm] \forall x\in [/mm] [a,b] [mm] \Rightarrow [/mm] B abgeschlossen.

Ich hoffe das geht so würde mich über hilfe freuen, danke
Tito

        
Bezug
Abgeschlossen: das wär einfach!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:26 So 08.05.2005
Autor: leduart


> Also:  Sei f [mm]\in[/mm] B, dann wähle eine Funktionenfolge
> [mm](f_k)_{k \in \IN}[/mm] aus B die gleichmäßig gegen f konvergiert
> (ich hoffe das kann ich einfach so sagen),

Nein, du hast ja nichts über f benutzt! und damit nichts über B! Ne Folge musst du schon finden!
(Den Spruch unter deinem Artikel find ich so ätzend, dass ich nicht über ne Lösung nachdenk.)

Gruss leduart

Bezug
                
Bezug
Abgeschlossen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:03 So 08.05.2005
Autor: Tito

Hallo Leduart,

danke für deine Antwort. Tut mir leid das ich dich mit meiner Sig in irgend einer Weise angegriffen habe, ich fand an dem Spruch einfach nur interessant, wie man durch vertauschen von 2 Wörtern den Sinn so entstellen kann, naja dann lösch ich ihn halt einfach.

Nur noch eine kleine Frage wäre es leichter wenn man das Komplement von B betrachtet und versucht zu zeigen, dass dies offen ist?

Gruß
Tito

Bezug
        
Bezug
Abgeschlossen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 So 08.05.2005
Autor: Stefan

Hallo Tito!

Es sei also [mm] $(f_k)_{k \in \IN}$ [/mm] eine Funktionenfolge aus $B$, die in der Supremumsnorm, also insbesondere punktweise gegen eine Funktion $f [mm] \in [/mm] C([a,b])$ konvergiert. Zu zeigen ist: $f [mm] \in [/mm] B$.

Die Bedingung $0 [mm] \le [/mm] f(x) [mm] \le [/mm] 1$ für alle $x [mm] \in [/mm] [a,b]$ ist klar. Zu zeigen bleibt, dass $f$ affin-linear ist.

Für alle $k [mm] \in \IN$ [/mm] sei

[mm] $f_k(x) [/mm] = [mm] \alpha_k [/mm] + [mm] \beta_k\, [/mm] x$.

Dann existiert

[mm] $\beta:= \lim\limits_{k \to \infty} \beta_k [/mm] = [mm] \lim\limits_{k \to \infty}\frac{f_k(x) - f_k(y)}{x-y}$ [/mm]

für beliebige, aber feste $x [mm] \ne [/mm] y$.

und dann auch (wähle $x [mm] \in [/mm] [a,b]$ beliebig, aber fest):

[mm] $\alpha:= \lim\limits_{k \to \infty} \alpha_k [/mm] = [mm] \lim\limits_{k \to \infty} (f_k(x) [/mm] - [mm] \beta_k\, [/mm] x)$.

Viele Grüße
Stefan

Bezug
                
Bezug
Abgeschlossen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 So 08.05.2005
Autor: Tito

Hallo Stefan,

ich danke dir.

Gruß
Tito

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]