matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAbleiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Ableiten
Ableiten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: verwirrung
Status: (Frage) beantwortet Status 
Datum: 21:52 Mo 24.05.2010
Autor: Laura28

Aufgabe
Das Schaubild der Funktion f hat Punkte, in denen die Tangente parallel zur x-Ache ist. Berechne die x-Werte dieser Punkte.Gib die Gleichungen dieser Tangenten an.

a) [mm] f(x)=(2x-10)(x^2+3) [/mm]

Diese Gleichung wollte ich jetzt ableiten, aber mich verwirren die ganzen Klammern. Gibt es dafür bestimmte Regeln, die ich irgendwie verdrängt habe oder so?
Denn wenn ich das ganz normal ableiten würde hätte ich ja als Ergebnis nur: 2*2x
der ganze Rest würde ja wegfallen
oder muss ich erst ausklammern also:

[mm] 2x*x^2+2x*3+(-10*x^2)+(-10*3) [/mm]
[mm] 2x^3+6x-10x^2-30 [/mm]
[mm] 2x^3-10x^2+6x-30 [/mm]

dann wäre die Ableitung ja:

[mm] 6x^2-20x+6 [/mm]

vielen Dank schonmal für eure Hilfe

        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 24.05.2010
Autor: Steffi21

Hallo

deine 1. Ableitung ist korrekt, verläuft die Tangente parallel zur x-Achse, so ist der Anstieg gleich Null, löse

[mm] 0=6x^{2}-20x+6 [/mm]

du bekommst die Stellen [mm] x_1 [/mm] und [mm] x_2, [/mm] berechne dann [mm] f(x_1) [/mm] und [mm] f(x_2) [/mm]

Steffi

Bezug
                
Bezug
Ableiten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 24.05.2010
Autor: Laura28

Ich habe jetzt f'(x) = 0 gesetzt und habe dann:

[mm] 0=6x^2-20x+6 [/mm]
[mm] 20x=6x^2+6 [/mm]
[mm] 26x^3=6 [/mm]
[mm] x^3=20 [/mm]
[mm] x=\wurzel[3]{20} [/mm]
Setze ich das einfach in f(x) ein und ist das dann schon die Tangentengleichung?
Also:

[mm] f(x)=(2*\wurzel[3]{20}-10)*(\wurzel[3]{20}^2+3) [/mm]

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mo 24.05.2010
Autor: fencheltee


> Ich habe jetzt f'(x) = 0 gesetzt und habe dann:
>  
> [mm]0=6x^2-20x+6[/mm]
>  [mm]20x=6x^2+6[/mm]
>  [mm]26x^3=6[/mm]
>  [mm]x^3=20[/mm]
>  [mm]x=\wurzel[3]{20}[/mm]

abenteuerlich was du da rechnest ;-)
benutze die pq-formel!

>  Setze ich das einfach in f(x) ein und ist das dann schon
> die Tangentengleichung?
>  Also:
>  
> [mm]f(x)=(2*\wurzel[3]{20}-10)*(\wurzel[3]{20}^2+3)[/mm]  


gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]