matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:32 Fr 06.03.2009
Autor: omarco

Aufgabe
f(x) = -t³ + 20t²

Guten Tag,
wir sollten in einer Aufagen die Ableitung zu diser Funktion herausfinden um Steigungen herauszufinden, jedoch weis ich nicht genau wie ich vorgehen soll, weil in dieser Funktion 2 mal t vorkommt.

Wir benutzen immer diese Formeln um das zu berechnen

m(x) =( f(x)-f(x0) )/ ( x - x0)

nun hab ich alles eingesetzt

m(x) = ((-x³+20x²) - (-a³+20a²)) / x-a

jetzt muss ich irgendwie versuchen so umzuformen, dass ich Zähler x-a steht.
Deshalb habe ich die Klammern weggemacht und die vorzeichen geändert.

m(x) ( -x³+20x² + a³-20a²) / x-a

und jetzt komme ich nicht mehr weiter
im normalfall konnte ich so umformen, dass ich irgendwie
x³-a³ stehen hab und hab das dann umgeformt so das da (x²+ax+a²)*(x-a)  und dann konnte ich kürzen.
Wie komme ich nun hier weiter ?
Vielen Dank für eure Hilfe


        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 06.03.2009
Autor: schachuzipus

Hallo omarco,

> f(x) = -t³ + 20t²
>  Guten Tag,
> wir sollten in einer Aufagen die Ableitung zu diser
> Funktion herausfinden um Steigungen herauszufinden, jedoch
> weis ich nicht genau wie ich vorgehen soll, weil in dieser
> Funktion 2 mal t vorkommt.
>
> Wir benutzen immer diese Formeln um das zu berechnen
>  
> m(x) =( f(x)-f(x0) )/ ( x - x0)
>
> nun hab ich alles eingesetzt
>
> m(x) = ((-x³+20x²) - (-a³+20a²)) / x-a [ok]
>  
> jetzt muss ich irgendwie versuchen so umzuformen, dass ich
> Zähler x-a steht.
> Deshalb habe ich die Klammern weggemacht und die vorzeichen
> geändert.
>
> m(x) ( -x³+20x² + a³-20a²) / x-a [ok]
>  
> und jetzt komme ich nicht mehr weiter
> im normalfall konnte ich so umformen, dass ich irgendwie
> x³-a³ stehen hab und hab das dann umgeformt so das da
> (x²+ax+a²)*(x-a)  und dann konnte ich kürzen. [ok]

genau das kannst du hier auch machen, fasse mal im Zähler die beiden Terme mit dem "hoch 3" zusammen und die anderen mit "hoch 2". Bei letzteren kannst du die 20 ausklammern und mal an die 3.binomische Formel denken ...

Bedenke auch, dass [mm] $(-x^3+a^3)=-(x^3-a^3)$ [/mm] ist, und das kennst du ja ...

Du kannst schlussendlich im Nenner $x-a$ ausklammern und dann kürzen ..

>  Wie komme ich nun hier weiter ?
>  Vielen Dank für eure Hilfe
>  

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]