matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung Abiaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitung Abiaufgabe
Ableitung Abiaufgabe < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Abiaufgabe: Idee
Status: (Frage) beantwortet Status 
Datum: 09:19 Do 05.10.2006
Autor: elberto

Aufgabe
f(x)= [mm] \bruch{1}{6}x*(x-3)² [/mm]
Ableitungen?

guten tag

habe diese aufgabe aus nem abitur von 98
sieht eigentlich nciht schwer aus  aber irgendwo hab ich mich  bei der ableitung verhaspelt, da ich bei einer späteren  fragestellung ,wo sich f und f'  schneiden nicht einmal annähernd an die punkte komme dich ich in meiner zeichnung ungefähr ausgemacht habe...
habe nämlich nach dem gleichstellen von f und f'  schnittwerte raus von (4,045/3,182)...

habe als erste ableitung  [mm] \bruch{1}{2}x²-2x+\bruch{3}{2} [/mm]

wo liegt der fehler?

danke
mfg
elberto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung Abiaufgabe: Ableitung stimmt
Status: (Antwort) fertig Status 
Datum: 09:37 Do 05.10.2006
Autor: Loddar

Hallo elberto,

[willkommenmr] !!


Deine Ableitung stimmt. Da musst Du Dich also bei der Berechnung der Schnittstellen verrechnet haben.

Bitte poste doch mal Deine Zwischenschritte ...


Zur Kontrolle mal meine Ergebnisse (bitte nachrechnen):

[mm] $x_1 [/mm] \ = \ [mm] 3-\wurzel{6} [/mm] \ [mm] \approx [/mm] \ 0.55$

[mm] $x_2 [/mm] \ = \ 3$

[mm] $x_3 [/mm] \ = \ [mm] 3+\wurzel{6} [/mm] \ [mm] \approx [/mm] \ 5.45$


Gruß
Loddar


Bezug
                
Bezug
Ableitung Abiaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Do 05.10.2006
Autor: elberto

Aufgabe
Rechenweg Gleichstellung

danke loddar für die schnelle antwort
ich sehe in meiner zeichnung schon das deine werte richtig sind

also mein falscher ansatz sieht wie folgt aus:

[mm] \bruch{1}{6}x*(x-3)=x²-4x+3 [/mm]

[mm] \bruch{1}{6}x²-x+\bruch{3}{2}=x²-4x+3 [/mm]

[mm] -\bruch{5}{6}x²+3x-\bruch{3}{2}=0 [/mm]

[mm] x²-3\bruch{3}{5}x-1\bruch{4}{5}=0 [/mm]


rechne ich das jetzt aus  komme ich auf meine werte

schonmal danke im vorraus

mfg
elberto

Bezug
                        
Bezug
Ableitung Abiaufgabe: hoch 2 fehlt
Status: (Antwort) fertig Status 
Datum: 10:18 Do 05.10.2006
Autor: d_lphin

Hallo,

du hast das Quadrat von f(x) nicht berücksichtigt.


> Rechenweg Gleichstellung
>  danke loddar für die schnelle antwort
>  ich sehe in meiner zeichnung schon das deine werte richtig
> sind
>  
> also mein falscher ansatz sieht wie folgt aus:
>  
> [mm]\bruch{1}{6}x*(x-3)=x²-4x+3[/mm]


eigentlich muss das doch heißen:

[mm] 2*\bruch{1}{6}x*(x-3)^{\red{2}}=x²-4x+3 [/mm]




Gruß
Del

Bezug
                        
Bezug
Ableitung Abiaufgabe: anderer Fehler
Status: (Antwort) fertig Status 
Datum: 10:41 Do 05.10.2006
Autor: Loddar

Hallo elberto!


Das fehlende [mm] (...)^2$ [/mm] war wohl nur ein  Tippfehler, wie die Folgezeile zeigt.

Allerdings hast du auf der rechten Seite (mit der Ableitung $f'(x)_$ ) den Faktor [mm] $\bruch{1}{2}$ [/mm] unterschlagen. Den musst Du hier noch mit ansetzen, schließlich wird sonst der Term der 1. Ableitung bereits verändert:

[mm]\underbrace{\bruch{1}{6}x*(x-3)^2}_{= \ f(x)} \ = \ \underbrace{\bruch{1}{2}x^2-2x+\bruch{3}{2}}_{= \ f'(x)} \ = \ \red{\bruch{1}{2}}*\left(x^2-4x+3\right)[/mm]


Gruß
Loddar


Bezug
                                
Bezug
Ableitung Abiaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Do 05.10.2006
Autor: d_lphin

Hallo Loddar,

muss dann da nicht ein x³-Term auftauchen?


Die 2 hatte ich schon auf die andere Seite multipliziert :-)



Gruß
Del

Bezug
                                        
Bezug
Ableitung Abiaufgabe: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 Do 05.10.2006
Autor: Loddar

Hallo Del!


> muss dann da nicht ein x³-Term auftauchen?

Macht er ja, wenn man die linke Seite der Gleichung ausmultipliziert.

Das kann man aber auch elegant umgehen, indem man die rechte Seite faktorisiert zu [mm] $\bruch{1}{2}*\left(x^2-4x+3\right) [/mm] \ = \ [mm] \bruch{1}{2}*(x-3)*(x-1)$ [/mm] .
Nun kann man dann nämlich durch $(x-3)$ teilen. Aber aufgepasst: Den Fall $x-3 \ = \ 0$ noch gesondert betrachten, sonst geht nämlich auch eine Lösung verloren!


> Die 2 hatte ich schon auf die andere Seite multipliziert

Du schon, aber elberto nicht ;-) ... und da lag auch der eigentliche Fehler von elberto.


Gruß
Loddar


Bezug
                                                
Bezug
Ableitung Abiaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Do 05.10.2006
Autor: elberto

so jetzt hab ich es

danke euch beiden

liebe grüße

elberto

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]