matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung Arctan seltsamer Weg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitung Arctan seltsamer Weg
Ableitung Arctan seltsamer Weg < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Arctan seltsamer Weg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Fr 25.03.2016
Autor: Paivren

N'abend, ich stehe vor einer Herleitung einer Ableitung, die ich nicht verstehe, vielleicht könnt ihr mir helfen?

Gesucht ist die Ableitung der Funktion [mm] \Theta [/mm] (k) mit k als reeller Variable.
Ferner gilt die Gleichung [mm] tan(\Theta)=\bruch{\wurzel{b^{2}-k^{2}}}{k} [/mm] mit b als reeller Konstanten.

Nun muss ich im Grunde genommen nur die Ableitung des ArkusTangens von der rechten Seite bilden, was mir auch gelingt (mittels Formelsammlung Trigonometrie und Kettenregel).
Aber im Buch ist der Rechenweg etwas seltsam und ich würde gerne verstehen, wie es dort gemacht wird.

Es wird angesetzt:
[mm] (1+tan^{2}(\Theta))d\Theta=[1+\bruch{b^{2}-k^{2}}{k^{2}}]d\Theta [/mm]

Soweit so gut. Aber woraus folgt die nächste Gleichheit?

[mm] =-\bruch{dk}{k^{2}}\wurzel{b^{2}-k^{2}}-\bruch{dk}{\wurzel{b^{2}-k^{2}}} [/mm]

Daraus kann man schließlich die gesuchte Ableitung [mm] -\bruch{1}{\wurzel{b^{2}-k^{2}}} [/mm] finden (zu der ich ja auch per "direktem" Ableiten gekommen bin).

Gruß

Paivren

        
Bezug
Ableitung Arctan seltsamer Weg: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Fr 25.03.2016
Autor: Leopold_Gast

Das ist nicht sehr glücklich aufgeschrieben. Eigentlich wird die Ausgangsgleichung differenziert:

[mm]\tan \vartheta = \frac{\sqrt{b^2 - k^2}}{k}[/mm]

Jetzt differenzieren (rechts [mm]\frac{1}{k} = k^{-1}[/mm] schreiben und die Produktregel verwenden):

[mm]\left( 1 + \tan^2 \vartheta \right) ~ \mathrm{d} \vartheta = \left( - \frac{\sqrt{b^2 - k^2}}{k^2} - \frac{1}{\sqrt{b^2 - k^2}} \right) ~ \mathrm{d} k[/mm]

Jetzt wird links für [mm]\tan \vartheta[/mm] der Term [mm]\frac{\sqrt{b^2 - k^2}}{k}[/mm] eingesetzt, wie du das bereits vorgeführt hast.

Bezug
                
Bezug
Ableitung Arctan seltsamer Weg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Sa 26.03.2016
Autor: Paivren

Hey, danke für die fixe Antwort!


Krass, dass du das gleich gesehen hast, jetzt versteh ich es.



Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]