matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitung an einer Stelle x0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Ableitung an einer Stelle x0
Ableitung an einer Stelle x0 < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung an einer Stelle x0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 27.11.2005
Autor: Walhallajinx

Hi Leute

Ich steh momentan voll auf dem Schlauch und habe einfach keine Ahnung, wie ich diese 2 Aufgaben lösen soll. Ich brauche unbedinget hilfe.

1.) Gegeben ist der Graph der Funktion f mit f(x)=  [mm] \bruch{1}{2} x^2 [/mm] und für jedes r  [mm] \in [/mm] R eine gerade gr:y= 2x + r
Bestimmen Sie r so, dass gr mit dem Graphen von f genau einen gemeinsamen Punkt Po hat.


2.) Die Mittellinie einer Rennstrecke wird durch y= 4 -  [mm] \bruch{1}{2} x^2 [/mm] beschrieben. Bei spiegelglatter Fahrbahn rutscht ein Fagrzeug und landet im Punkt Y (0|6) in den Strohballen.
Wo hat das Fahrzeug die Straße verlassen?

        
Bezug
Ableitung an einer Stelle x0: Ansätze
Status: (Antwort) fertig Status 
Datum: 19:58 So 27.11.2005
Autor: Loddar

Hallo Walhallajinx!


> 1.) Gegeben ist der Graph der Funktion f mit f(x)= [mm]\bruch{1}{2} x^2[/mm]
> und für jedes r  [mm]\in[/mm] R eine gerade gr:y= 2x + r
> Bestimmen Sie r so, dass gr mit dem Graphen von f genau
> einen gemeinsamen Punkt Po hat.

Du musst $r_$ derart bestimmen, dass die genannte Gerade und die Kurve folgende beiden Eigenschaften im Punkt [mm] $P_0 [/mm] \ [mm] \left( \ x_0 \ ; \ y_0 \ \right)$ [/mm] erfüllt.

Denn schließlich muss die gesuchte Gerade sowohl im Funktionswert als auch in der Steigung der Funktion entsprechen:

(1.) [mm] $f(x_0) [/mm] \ = \ [mm] g_r(x_0)$ $\gdw$ $\bruch{1}{2}*x_0^2 [/mm] \ = \ [mm] 2*x_0 [/mm] + r$

(2.)  [mm] $f'(x_0) [/mm] \ = \ [mm] g_r'(x_0)$ $\gdw$ [/mm]     $..._$

Aus der 2. Gleichung nun zunächst $x_$ bestimmen und anschließend mit der ersten Gleichung das gesuchte $r_$ ...



> 2.) Die Mittellinie einer Rennstrecke wird durch y= 4 - [mm]\bruch{1}{2} x^2[/mm] beschrieben.
> Bei spiegelglatter Fahrbahn rutscht ein Fahrzeug und landet im Punkt Y (0|6) in den
> Strohballen.
> Wo hat das Fahrzeug die Straße verlassen?

Hier wird ebenfalls die Tangentengleichung gesucht, die durch den Punkt $Y_$ verläuft.

Diese hat im gesuchten (Berühr-)Punkt $B \ [mm] \left( \ x_b \ ; \ y_b\ \right)$ [/mm] denselben Funktionswert wie die Kurve sowie dieselbe Steigung:

[mm] $m_t [/mm] \ = \ [mm] f'(x_b) [/mm] \ = \ [mm] -x_b$ [/mm]

[mm] $y_b [/mm] \ = \ [mm] 4-\bruch{1}{2}*x_b^2$ [/mm]


Stellen wir nun die Punkt-Steigungs-Form der Tangente auf, so erhalten wir:

[mm] $m_t [/mm] \ = \ [mm] \bruch{y_b-y_Y}{x_b-x_Y} [/mm] \ = \ [mm] \bruch{4-\bruch{1}{2}*x_b^2 - 6}{x_b-0} [/mm] \ = \ [mm] -x_b$ [/mm]


Und nun diese Gleichung nach [mm] $x_b$ [/mm] umstellen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]