matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Ableitung bilden
Ableitung bilden < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Do 01.03.2007
Autor: verteh_nix

Aufgabe
die Funktion lautet: ln(x)*(ln(x)-2a)

Hallöchen....

habe etwas Schwierigkeiten bei der Ermittung der Ableitung....
Kann mir einer sagen ob diese hier richtig ist: 2x^-1*(ln(x)-a)

Dankeschön....

        
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Do 01.03.2007
Autor: Stefan-auchLotti

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> die Funktion lautet: ln(x)*(ln(x)-2a)
>  Hallöchen....
>  
> habe etwas Schwierigkeiten bei der Ermittung der
> Ableitung....
>  Kann mir einer sagen ob diese hier richtig ist:
> 2x^-1*(ln(x)-a)
>  
> Dankeschön....

$\bffamily \text{Hi,}$

$\bffamily \text{Ist Korrekt, sofern die Funktion von }x\text{ abhängt und nur die }-1\text{ im Exponenten steht (wovon ich stark ausgehe).$

$\bffamily \text{Stefan.}$

Bezug
                
Bezug
Ableitung bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Do 01.03.2007
Autor: verteh_nix

Dankeschön!!!!

Bezug
                        
Bezug
Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 01.03.2007
Autor: verteh_nix

Lässt sich denn die Ableitung nach x auflösen???
Dann müsste ja 2x^-1 null werden und das ist doch nciht der fall, oder???

Bezug
                                
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Do 01.03.2007
Autor: schachuzipus

Hallo,

die Ableitung ist ja [mm] f'(x)=\bruch{2}{x}\cdot{}(ln(x)-a), [/mm] also ein Produkt, das
genau dann Null ist, wenn einer der Faktoren Null ist.

Der erste Faktor [mm] \bruch{2}{x} [/mm] ist niemals Null, nur ln(x)-a kann Null werden,
und zwar, wenn ln(x)=a [mm] \Leftrightarrow e^{ln(x)}=e^{a}\Leftrightarrow x=e^{a} [/mm]


Gruß

schachuzipus


Bezug
                
Bezug
Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 03.03.2007
Autor: verteh_nix

hmm....hab jetzt als zweite ableitung -2(ln(x)-2a-2x^-2)
kann das denn stimmen???-sieht irgendwie so falsch aus....

Bezug
                        
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 03.03.2007
Autor: schachuzipus


> hmm....hab jetzt als zweite ableitung -2(ln(x)-2a-2x^-2)
>  kann das denn stimmen???-sieht irgendwie so falsch aus....


Hi,

das sieht in der Tat komisch aus.
Mach die zweite Ableitung nach der Produktregel: [mm] (u\cdot{}v)'=u'\cdot{}v+u\cdot{}v' [/mm]

Also hier [mm] f(x)=\bruch{2}{x}(ln(x)-a), [/mm] also [mm] u(x)=\bruch{2}{x} [/mm] und v(x)=ln(x)-a

Damit [mm] u'(x)=-\bruch{2}{x^2} [/mm] und [mm] v'(x)=\bruch{1}{x} [/mm]

Den Rest "biegst" du hin ;-)


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]