matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAbleitung einer ArcusFunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Ableitung einer ArcusFunktion
Ableitung einer ArcusFunktion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer ArcusFunktion: Ergebnis
Status: (Frage) beantwortet Status 
Datum: 15:38 Di 01.05.2007
Autor: Blaub33r3

Aufgabe
leiten sie [mm] arcsin(\wurzel{1-x^{2}}) [/mm] ab!

Hi Leute!

Also meine Schritte sehen wie folgt aus =>

(1) = [mm] \bruch{1}{\wurzel{1-x^{2}}}*0.5(1-x^{2})^{-0.5}*(-2x) [/mm]
Dann kürze und komme auf
(2) = [mm] \bruch{-x}{\wurzel{1-x^{2}}*\wurzel{1-x^{2}}} [/mm]

Aber eigentlich sieht die Lösung etwas anders so und zwar so:
f'(x)= [mm] \bruch{-x}{|x|*\wurzel{1-x^{2}}} [/mm]

Gibs da bestimmte Wurzelgesetze, hatte noch nie mit sowas zutun^^? Und wieso ist hier der betrag aufeinmal gekommen?
Würde mich über Hilfe freuen!

Grüße Daniel

        
Bezug
Ableitung einer ArcusFunktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 15:45 Di 01.05.2007
Autor: Loddar

Hallo Daniel!


Deine Ableitung ist im ersten Schritt falsch. Du musst ja hier erhalten:

[mm] $\left[ \ \arcsin\red{\wurzel{1-x^2}} \ \right]' [/mm] \ = \ [mm] \bruch{1}{\wurzel{1-\left( \ \red{\wurzel{1-x^2}} \ \right)^2 \ }}*\bruch{-2x}{2*\wurzel{1-x^2}} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
Ableitung einer ArcusFunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 01.05.2007
Autor: Blaub33r3

Okay, das hat mir geholfen^^
Aber leider bekomms ich das noch nicht wirklich gepeilt :/
Hab Probleme mit so einer ähnlichen Aufgabe

[mm] f(x)=arccos(\bruch{x+1}{x-1}) [/mm]
f'(x)= [mm] \bruch{-1}{\wurzel{1-(\bruch{x+1}{x-1})^{2}}}*\bruch{-2}{(x-1)^{2}} [/mm]

Nur schaffe ich das jetz auch nich weiter umzuformen um auf folgendes Ergebnis zukommen [mm] f'(x)=\bruch{1}{\wurzel{|x|}*|x-1|} [/mm]

hints bitte : (

Bezug
                        
Bezug
Ableitung einer ArcusFunktion: Umformung
Status: (Antwort) fertig Status 
Datum: 16:18 Di 01.05.2007
Autor: Loddar

Hallo Daniel!



[mm] $\bruch{-1}{\wurzel{1-\left(\bruch{x+1}{x-1}\right)^2}}*\bruch{-2}{(x-1)^2}$ [/mm]

$= \ [mm] \bruch{1}{\wurzel{1-\bruch{(x+1)^2}{(x-1)^2}}}*\bruch{2}{(x-1)^2}$ [/mm]

$= \ [mm] \bruch{1}{\wurzel{\bruch{(x-1)^2-(x+1)^2}{(x-1)^2}}}*\bruch{2}{(x-1)^2}$ [/mm]

$= \ [mm] \bruch{\wurzel{(x-1)^2}}{\wurzel{(x-1)^2-(x+1)^2}}*\bruch{2}{(x-1)^2}$ [/mm]

$= \ [mm] \bruch{|x-1|}{\wurzel{x^2-2x+1-x^2-2x-1}}*\bruch{2}{|x-1|^2}$ [/mm]

$= \ [mm] \bruch{1}{\wurzel{-4x}}*\bruch{2}{|x-1|}$ [/mm]

$= \ [mm] \bruch{1}{2*\wurzel{|x|}}*\bruch{2}{|x-1|} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]