matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung ganzrationaler Funkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableitung ganzrationaler Funkt
Ableitung ganzrationaler Funkt < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung ganzrationaler Funkt: differenzial
Status: (Frage) beantwortet Status 
Datum: 14:32 So 25.01.2009
Autor: Julia1988

Aufgabe
gegeben ist die funktion f mit [mm] f(x)=x^3. [/mm] Ihr Graph sei K.
a)die tangente an K in B(1/1) schneidet K im Punkt P. Bestimmen sie P.
b)die tangente an K in dem beliebigen Punkt B [mm] (XB/XB^3) [/mm] mit XB ungleich 0 schneidet K im Punkt P. Bestimmen Sie P in Abhängigkeit von XB.
c) zeigen sie: die normale von K in B [mm] (XB/XB^3) [/mm] mit XB ungleich 0 hat mit K keinen weiteren gemeinsamen Punkt.

Hmmm also diese aufgabe sagt mir nichts und leider meiner schwester die es gerade hat auch nicht. bei mir ist es ein jahr her. ich möchte meiner schwester heute helfen und es wäre daher toll wenn ihr mir helfen würdet. wir haben uns überlegt das man wohl den schnittpunkt berchnen muss, leider wissen wir nicht wie das geht. man hat ja keine punkt zum gleichsetzen.

        
Bezug
Ableitung ganzrationaler Funkt: erst mal Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 14:38 So 25.01.2009
Autor: Loddar

Hallo Julia!


Kannst Du denn die Tangentengleichung im Punkt $B_$ bestimmen? Auch hier gilt mit der Formel für die Tangentengleichung:
$$t(x) \ = \ f'(1)*(x-1)+f(1) \ = \ f'(1)*(x-1)+1$$
Bestimme als $f'(1)_$ und setze den Wert in diese Formel ein. Den gesuchten Punkt $P_$ erhältst Du dann druch Gleichsetzen mit der Funktionsvorschrift $f(x) \ = \ [mm] x^3$ [/mm] .


Gruß
Loddar




Bezug
                
Bezug
Ableitung ganzrationaler Funkt: ableitung einer zahl
Status: (Frage) beantwortet Status 
Datum: 15:08 So 25.01.2009
Autor: Julia1988

Aufgabe
siehe anfang

wie bildet man denn die ableitung einer normalen zahl? sprich in dieser aufagbe von 1.da greift ja die potenzregel nicht.

Bezug
                        
Bezug
Ableitung ganzrationaler Funkt: erst ableiten, dann einsetzen
Status: (Antwort) fertig Status 
Datum: 15:10 So 25.01.2009
Autor: Loddar

Hallo Julia!


Die Ableitung einer Konstanten ist Null. Aber das interessiert hier nicht ... Du musst erst die Ableitung bilden und anschließend den Wert $x \ = \ 1$ einsetzen.


Gruß
Loddar




Bezug
                
Bezug
Ableitung ganzrationaler Funkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 So 25.01.2009
Autor: Julia1988

Aufgabe
siehe anfang

okay irgendwie klappt das imoment nicht. ich werde wohl erst mal ne pause machen. das problem für mich ist, dass es einerseits den wert zu der ableitung von 1 brauche und zuerst ableiten soll, andererseits ist es aber nicht relevant was die ableitung von 1 ergibt. wovon soll man denn dann eine ableitung bilden? wir haben doch nur konstante zahlen. außer [mm] x^3. [/mm] ansonsten kann ich nicht nachvollziehen wie man eine ableitung bildet. sorry, ich werde es heute abend noch mal versuchen. vielleicht bin ich dann besser drauf.

Bezug
                        
Bezug
Ableitung ganzrationaler Funkt: step by step
Status: (Antwort) fertig Status 
Datum: 15:31 So 25.01.2009
Autor: Loddar

Hallo Julia!


Die Ableitung benötigen wir, da diese uns die Steigung der Funktion an beliebiger Stelle verrät.

Also nun schrittweise ...

-  Wie lautet die Ableitung $f'(x)_$ von $f(x) \ = \ [mm] x^3$ [/mm] ?

-  Welchen Zahlenwert erhält man, wenn man $x \ = \ 1$ in die Ableitung $f'(x)_$ einsetzt?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]