matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung von 2 hoch X
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Ableitung von 2 hoch X
Ableitung von 2 hoch X < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von 2 hoch X: Frage
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 15.02.2005
Autor: nicoleS

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Habe schon bei den Ableitungsregeln geschaut, doch irgendwie nichts gefunden,...

Unser Thema sind Expotentialfkt.
Ganz schlicht für die Profis;

Wie ist die Ableitung von 2 hoch x ?

Ich brings nicht raus...
Freue mich über jede Antwort!

Gruß
Nicole S.

wie leite ich f(x)=2

        
Bezug
Ableitung von 2 hoch X: Querverweis
Status: (Antwort) fertig Status 
Datum: 21:31 Di 15.02.2005
Autor: Loddar

Hallo Nicole!

[willkommenmr] !!

In dieser Antwort habe ich für Dein Problem eine allgemeine Antwort gegeben.

Kommst Du nun weiter für Deine Aufgabe?
Du brauchst jetzt nur noch für a die 2 einsetzen ...

Wie lautet denn dann Deine gesuchte Ableitung?


Loddar


Bezug
                
Bezug
Ableitung von 2 hoch X: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Di 15.02.2005
Autor: nicoleS

Ich habe diese Frage in noch keinem anderen Forum im Internet gestellt.

Hallo,

Danke für deine Antwort!
Es ist so: Ich soll mit Hilfe von Tangenten die Ableitung der Expotentialfkt. 2 hoch x herausfinden. Habe die 2 hoch x schön eingezeichnet und jetzt kommt das problem mit den Tangenten. Okay, jetzt habe ich gedacht, vielleicht komme ich auch auf die Ableitung von 2 hoch x auf dem Rechenweg und nicht durch grafische Arbeit.

Also kommt bei x = 1 als y-wert: 1,386 raus?
[mm] (a^1)' [/mm] = ln(2) * [mm] 2^1 [/mm] = 1,386 ???

geht das ueberhaupt so?


Hoffe es sind noch alle wach!! =)

Danke!

Gruß
Nicole

Bezug
                        
Bezug
Ableitung von 2 hoch X: Schreibweise
Status: (Antwort) fertig Status 
Datum: 23:11 Di 15.02.2005
Autor: e.kandrai

Die Steigung hast du richtig berechnet, aber bei der Schreibweise (bzw. einigen Kommentaren) Fehler gemacht...

> Also kommt bei x = 1 als y-wert: 1,386 raus?
>  [mm](a^1)'[/mm] = ln(2) * [mm]2^1[/mm] = 1,386 ???

Die Funktion heißt [mm]f(x)=2^x[/mm]? Dann ist die Ableitung ja [mm]f'(x)=ln(2) \cdot 2^x[/mm].
Und da uns anscheinend die Stelle [mm]x=1[/mm] interessiert: wenn du [mm]x=1[/mm] in die 1. Ableitung einsetzt, dann bekommst du die Steigung, nicht den y-Wert. Für den y-Wert musst du [mm]x=1[/mm] in die Funktionsgleichung [mm]f(x)[/mm] einsetzen.

Dein Wert 1,386 sieht ja so aus, als wäre er durch die Ableitung zustande gekommen, also ist das dann die Steigung der Kurve an der Stelle [mm]x=1[/mm].

Ist nur so: wenn die Aufgabe wirklich lautet, dass man über die Tangentensteigungen auf die Ableitung der Funktion [mm]f(x)=2^x[/mm] kommen soll, dann braucht man eigentlich einige Paare [x-Wert ; Steigung], um ... naja, auf die Ableitungsfunktion zu kommen ... oder eher die bekannte Ableitung [mm]f'(x)=ln(2) \cdot 2^x[/mm] zu bestätigen.

Aber ganz sicher, ob ich dein Problem verstanden habe, bin ich mir nicht.


Bezug
                                
Bezug
Ableitung von 2 hoch X: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Mi 16.02.2005
Autor: nicoleS

Hallo!

Danke für deine Antwort, heute haben wir das ganze thema mit hilfe der eulerischen?! zahl, naja, [mm] e^x [/mm] halt behandelt.
Mein Problem ist jetzt eigentlich gelöst, allerdings finde ich es nicht so schwer mit der ableitung ln(a) * [mm] a^x [/mm] zu arbeiten.

Danke für alle Posts

Gruß
Nicole

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]