matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Ableitungen
Ableitungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Mo 29.11.2004
Autor: Tiinnii

Hi @ All!

Ich habe folgende Aufgabe:

[mm] L(x)=\wurzel{(a+x)^2+( \bruch{a*(b+d)+(b+d)*x}{x})^2} [/mm]
ich komme mit den Ableitungen einfach nicht zurecht!!!
mfg
Tiinnii

        
Bezug
Ableitungen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 14:38 Mo 29.11.2004
Autor: Pons

Hi,
wo hapert´s denn?
Zunächst würde ich versuchen die Wurzel wegzubekommen, in dem Falle recht einfach.
Es bleibt dann übrig:

[mm] (a+x)+\bruch{a(b+d)+(b+d)x}{x} [/mm]

Bezug
                
Bezug
Ableitungen: wirklich falsch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mo 29.11.2004
Autor: Bastiane


> Hi,
>  wo hapert´s denn?
>  Zunächst würde ich versuchen die Wurzel wegzubekommen, in
> dem Falle recht einfach.
>  Es bleibt dann übrig:
>  
> [mm](a+x)+\bruch{a(b+d)+(b+d)x}{x}[/mm]

Hallo!
Also, ich habe diese Antwort nicht als falsch markiert, aber sie ist tatsächlich falsch! Das widerspräche ja den binomischen Formeln - es gilt doch:
[mm] (a+b)^2=a^2+2ab+b^2 [/mm] und nicht [mm] (a+b)^2=a^2+b^2 [/mm]
und demnach gilt:
[mm] \wurzel{a^2+b^2}\not=\wurzel(a+b)^2=a+b [/mm]

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Ableitungen: ???
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 29.11.2004
Autor: e.kandrai

Ich versteh leider auch nicht, was du hier machen willst / sollst, bzw. was für Ableitungen du meinst.

Bezug
        
Bezug
Ableitungen: Antwort (Ansatz)
Status: (Antwort) fertig Status 
Datum: 23:46 Mo 29.11.2004
Autor: fridolin

Versuch doch mal mittels Kettenregel abzuleiten ...
ist zwar ziemlich viel Schreibarbeit, aber mir fällt im Moment auch nix anderes ein.
Ps: a, b, d sind natürlich Konstanten

Bezug
        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Di 30.11.2004
Autor: Ursus

Hi!
Wenn du die 1. Ableitung von deiner Funktion suchst, brauchst du in deinem Bsp die Kettenregel. Die Kettenregel heißt ja äußere Ableitung mal innere Ableitung und in deinem Fall wird halt die innnere Ableitung einwenig komplizierter.

L'(x) =  [mm] \bruch{1}{2} [/mm] ( das was unter der Wurzel steht) hoch -0.5  mal der inneren Ableitung

Für die innere Ableitung multiplixierst du einfach alles unter der Wurzel aus, kürzt es dann (damit wird es einfacher)  und von diesem Polynom machst du dann die Ableitung.
(achte auch auf die Produkt bzw. Quotientenregel)

Falls du noch Fragen hast, dann meld dich einfach.
Mfg URSUS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]