matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAbleitungen trigoe Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Ableitungen trigoe Funktionen
Ableitungen trigoe Funktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen trigoe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 So 27.08.2006
Autor: kira612

Aufgabe
Hi, habe ein kleines Problem mit den Ableitungen für trigonometrische Funktionen.. Ich habe leider gefehlt als wir Additontheoreme usw.gemacht haben und kann daher leider gar nichts umformen. Vllt kann mir auch jemand eine gute Internetseite mit Übungen verraten

Bitte um Ansätze/Hilfen für die ersten beiden Ableitungen folgender Funktionen:   3*sin(2x) + 2cos²x + 4*sin²x und sin x (4 cosx - 8cos³x)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungen trigoe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 27.08.2006
Autor: Denny22

Hallo kira,

zu 1:

zum Thema "Trigonometrische Funktionen" findest Du eigentlich überall etwas. Hier mal ein Skript von meinem ehemaligen Prof.
(ist zwar handschriftlich, aber sehr gut mit Beispielen.)

http://www.math.uni-bayreuth.de/org/mathe3/teach/ws_04_05/AnalysisI.html

sonst such mal in google. Außerdem findest Du hier ein schönes Skript dazu:

http://mo.mathematik.uni-stuttgart.de/kurse/

Bei letzterem Link musst Du speziell zum Deinem Thema in das Skript "Analysis einer Veränderlichen" schauen.

Wichtig ist, dass Du die Rechenregeln zum Ableiten (Differenzieren) kennst, wie z.B.: Produktregel, Kettenregel, Quotientenregel,
Linearität, u.s.w. . Diese stehen aber in beiden Skripten drin. Ebenso findest Du sie in Wikipedia, wenn Du nach dem Begriff "Differentiation" suchst.


zu 2:
Zur Ableitung Deiner ersten Funktion habe ich die Produktregel, Kettenregel und Linearität ausgenutzt und man kommt auf:

[mm] $f(x)=3*\sin(2x)+2*\cos^{2}(x)+4*\sin^{2}(x)$ [/mm]

$f'(x) [mm] =6*\cos(2x)+4*\sin(x)*\cos(x)$ [/mm]
[mm] $f''(x)=-12*\sin(x)-4*\sin^{2}(x)+4*\cos^{2}(x)$ [/mm]

Zur zweiten musst du oft die Produktregel hintereinander verwenden und kommst auf:

$g(x)=$

$g'(x) [mm] =\cos(x)*(4*\cos(x)-8*\cos^{3}(x))+\sin(x)*(-4*\sin(x)+24*\cos^{2}(x)*\sin(x))$ [/mm]
[mm] $g''(x)=-\sin(x)*(4*\cos(x)-8*\cos^{3}(x))+2*\cos(x)*(-4*\sin(x)+24*\cos^{2}(x)*\sin(x))+\sin(x)*(-4*\cos(x)-48*\cos(x)*\sin^{2}(x)+24*\cos^{3}(x))$ [/mm]

Noch ausführlicher möchte ich es nicht machen. Die Rechnung (insbesondere in der 2. Funktion) kann sehr lang werden.

Hoffe, dass Dir das erst einmal weiterhilft. Sieh Dir die Rechenregeln an!!!
Das ist ganz entscheidend.

Ciao Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]