matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenAddition komplexer Brüche
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Addition komplexer Brüche
Addition komplexer Brüche < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition komplexer Brüche: Rechenfehler irgendwo
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 19.05.2015
Autor: Ceriana

Aufgabe
Bestimmen Sie [mm] \alpha [/mm] und [mm] \beta \in \mathbb{R} [/mm] so, dass

[mm] \frac{1+i}{2-i} [/mm] + [mm] \frac{3-2i}{2+3i} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

Hallo,

ich bin die Aufgabe oben so angegangen, dass ich beide Brüche erstmal mit den konjugierten Nennern erweitert habe, die reelen Nenner dann gleichnamig gemacht habe und dann die Brüche einfach addiert und durch den Nenner geteilt. Konkret:

[mm] \frac{1+i}{2-i} [/mm] + [mm] \frac{3-2i}{2+3i} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{(1+i)\cdot (2+i)}{(2-i)\cdot (2+i)} [/mm] + [mm] \frac{(3-2i)\cdot (2-3i)}{(2+3i)\cdot(2-3i)} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{3+3i}{5}+\frac{-13i}{-5} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{15+15i}{15}+\frac{39i}{15} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{15+54i}{15} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow [/mm] 1+3.6i

Das ist laut Lösung aber nicht korrekt. Ich vermute ich habe irgendwo einen trivialen Rechenfehler gemacht, aber nach mehreren erneuten Rechnungen kann ich den Fehler nicht finden.

Kann mir da jemand weiterhelfen?

Liebe Grüße,

Ceriana

        
Bezug
Addition komplexer Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Di 19.05.2015
Autor: Ceriana

Fehler in der 3. Gleichung, im Nenner soll eine 3 statt einer 5 stehen. Der Fehler ist mir hier aber nur beim Tippen passiert.

Bezug
        
Bezug
Addition komplexer Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Di 19.05.2015
Autor: leduart

Hallo
du hast mehrere Fehler gemacht.

> Bestimmen Sie [mm]\alpha[/mm] und [mm]\beta \in \mathbb{R}[/mm] so, dass
>  
> [mm]\frac{1+i}{2-i}[/mm] + [mm]\frac{3-2i}{2+3i}[/mm] = [mm]\alpha[/mm] + [mm]\beta[/mm] i
>  Hallo,
>  
> ich bin die Aufgabe oben so angegangen, dass ich beide
> Brüche erstmal mit den konjugierten Nennern erweitert
> habe, die reelen Nenner dann gleichnamig gemacht habe und
> dann die Brüche einfach addiert und durch den Nenner
> geteilt. Konkret:
> Das Vorgehen ist korrekt.
> [mm]\frac{1+i}{2-i}[/mm] + [mm]\frac{3-2i}{2+3i}[/mm] = [mm]\alpha[/mm] + [mm]\beta[/mm] i
>  
> [mm]\Leftrightarrow \frac{(1+i)\cdot (2+i)}{(2-i)\cdot (2+i)}[/mm] +
> [mm]\frac{(3-2i)\cdot (2-3i)}{(2+3i)\cdot(2-3i)}[/mm] = [mm]\alpha[/mm] +
> [mm]\beta[/mm] i
>  
> [mm]\Leftrightarrow \frac{3+3i}{5}+\frac{-13i}{-5}[/mm] = [mm]\alpha[/mm] +
> [mm]\beta[/mm] i

>
1. Fehler  [mm] (1+i)\cdot [/mm] (2+i) falsch berechnet [mm] i^2=-1! [/mm]

2. Fehler [mm] (2+3i)\cdot(2-3i) [/mm] falsch berechnet ,da muss doch ddas Betragsquadrat des nenners also 4+9 rauskommen

weiter hab ich nicht mehr nachgesehen

Gruß leduart

Bezug
                
Bezug
Addition komplexer Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Mi 20.05.2015
Autor: Ceriana

Oh man, wie vermutet elementare Rechenfehler. Hab alles korrigiert und habe nun das korrekte raus. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]