matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenAdjunktensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Adjunktensatz
Adjunktensatz < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjunktensatz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:56 So 25.11.2007
Autor: schlumpfinchen123

Aufgabe
Sei A = [mm] \begin{pmatrix} 2 & 1 & 2 \\ 3 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \in M_3_3(\IZ/6\IZ). [/mm]
Berechnen Sie die Adjunkte von A und, falls dies möglich ist,[mm] A^{-1}[/mm].

Hallo,

habe mal eine Frage zu der Aufgabe. Haben die Aufgabe in einem Seminar gerechnet.  Ich weiß auch wie man die Adjunkte berechnet. Diese lautet jedenfalls:

[mm] A^{Ad} [/mm] = [mm] \begin{pmatrix} 2 & 1 & 4 \\ 5 & 4 & 2 \\ 4 & 3 & 1 \end{pmatrix} [/mm]

Jetzt habe ich eine Frage zur Berechnung des inversen von A. Die
Formel, die wir zur Berechnung der Inversen herangezogen haben und die aus dem Adjunktensatz gefolgert werden kann lautet:

[mm] A^{-1} [/mm] = [mm] \bruch{A^{Ad}}{(det A)} [/mm]

Wir haben dann die Determinante von A berechnet, die gleich 5 ist und haben dann die Adjunkte mit  5 multipliziert. Das ergab dann die zu A inverse Matrix [mm] A^{-1}. [/mm]
Jetzt meine Frage: Ich verstehe nicht, warum man die Adjunkte mit 5 (also mit der Determinante)multipliziert. Müßte man laut der Formel nicht eher durch 5 teilen?

vielen dank schon mal und viele grüße!

        
Bezug
Adjunktensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mo 26.11.2007
Autor: steffenhst

Hallo Schlumpfinchen,
wenn in eurem Seminar die Matrix auch in Z/6Z war, dann ist es OK, denn 5*5 = 25 = 1 in Z/6Z, d.h. 5 ist zu sich selbst invers. Es kommt also auf den Ring an.
Hilft das?
Grüße, Steffen

Bezug
                
Bezug
Adjunktensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 27.11.2007
Autor: schlumpfinchen123

hallo,

danke für deine Antwort. Ich gaube ich habe das jetzt so einigermaßen verstanden, warum man mit 5 multiplizieren kann, bzw. warum 5 zu sich selbst invers ist in Z/6Z.
Mir ist allerdings immer noch nicht ganz klar, warum man laut der Formel die Adjunkte nicht einfach durch 5 teilen kann. Denn die Determinante der Matrix ist ja auch gleich 5. Ich sehe zwar, dass dann etwas anderes herauskommt, als wenn man mit 5 multipliziert. Aber laut der Formel müßte das doch eigentlich auch richtig sein, oder?!
Ich denke, dass ich irgendetwas noch nicht richtig verstanden habe?!

Gruß aus Bremen.

Bezug
                        
Bezug
Adjunktensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 28.11.2007
Autor: steffenhst

Hallo Schlumpfinchen,
ich glaube, dass du es verstanden hast, bloß mit den Ringen noch nicht ganz klarkommst. Aus dem Adjunktensatz folgt doch:
[mm] A^{-1} [/mm] = [mm] \bruch{1}{det(A)}*A_{Ad} [/mm] = [mm] (det(A))^{-1}*A_{Ad}. [/mm]

für deinen Fall:
[mm] A^{-1} [/mm] = [mm] (det(A))^{-1}*A_{Ad} [/mm] = [mm] (5)^{-1}*A_{Ad}. [/mm]
Nun bist du in Z/6Z, d.h. [mm] (5)^{-1} [/mm] = 5 und deshalb die Multiplikation mit 5.

wärst du in [mm] \IR, [/mm] dann müsstest du die Adjunkte mit [mm] \bruch{1}{5} [/mm] multiplizieren bzw. durch 5 teilen, denn in [mm] \IR [/mm] ist das inverse Element zu 5 ja [mm] \bruch{1}{5} [/mm] (denn 5 * [mm] \bruch{1}{5} [/mm] = 1). Hier kommt also was unterschiedliches raus.

Grüße, Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]