matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenAllg. Berechnung Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Allg. Berechnung Winkel
Allg. Berechnung Winkel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Berechnung Winkel: Kreuzprodukt; Skalarprodukt
Status: (Frage) beantwortet Status 
Datum: 16:53 Fr 03.10.2008
Autor: RuffY

Aufgabe
Berechne ganz allg. den Winkel zwischen den Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b}, [/mm] wenn [mm] |\vec{a}x\vec{b}|=1 [/mm] und das Skalarprodukt [mm] \vec{a}*\vec{b}=-1 [/mm] ist.

Hallo,

zu oben stehender Aufgabe fehlt mir leider nach langer Überlegung der Ansatz, ich habe in meinen Aufzeichnungen und in Formelsammlungen geschaut, ob ich irgendwie das Skalarprodukt und das Kreuzprodukt sinnvoll zusammenbasteln kann, aber etwas sinniges ist leider nicht herausgekommen...habt ihr eine Idee?

Grüße

Sebastian

        
Bezug
Allg. Berechnung Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 03.10.2008
Autor: Al-Chwarizmi


> Berechne ganz allg. den Winkel zwischen den Vektoren
> [mm]\vec{a}[/mm] und [mm]\vec{b},[/mm] wenn [mm]|\vec{a}x\vec{b}|=1[/mm] und das
> Skalarprodukt [mm]\vec{a}*\vec{b}=-1[/mm] ist.
>  
> Hallo,
>  
> zu oben stehender Aufgabe fehlt mir leider nach langer
> Überlegung der Ansatz, ich habe in meinen Aufzeichnungen
> und in Formelsammlungen geschaut, ob ich irgendwie das
> Skalarprodukt und das Kreuzprodukt sinnvoll zusammenbasteln
> kann, aber etwas sinniges ist leider nicht
> herausgekommen...habt ihr eine Idee?
>  
> Grüße
>  
> Sebastian


a und b seien die Beträge der beteiligten Vektoren und
[mm] \varphi [/mm] ihr Zwischenwinkel.
Du kennst sicher die Formeln

        [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]

und

        [mm] \vec{a}*\vec{b}=a*b*cos(\varphi) [/mm]

Mit den Vorgaben der Aufgabe ergeben sich also die Gleichungen

         [mm] a*b*|sin(\varphi)|=1 [/mm]      und   [mm] a*b*cos(\varphi)=-1 [/mm]

Dividiert man die linken und die rechten Seiten(***), hat man:

         [mm] \bruch{|sin(\varphi)|}{cos(\varphi)}=-1 [/mm]

Daraus kann man schliessen, dass [mm] |tan(\varphi)|=1. [/mm]
Ausserdem muss [mm] cos(\varphi) [/mm] negativ sein und damit [mm] \varphi [/mm]
ein stumpfer Winkel. Dies passt nur, wenn [mm] \varphi=\bruch{3}{4}\pi=135°. [/mm]
Der Fall [mm] \varphi=225° [/mm] darf weggelassen werden, weil man
als Winkel zwischen Vektoren stets den im Intervall [0...180°] nimmt.



(***) dies ist hier sicher möglich, weil ja eben [mm] a*b*cos(\varphi)=-1≠0 [/mm] vorausgesetzt ist !

Bezug
                
Bezug
Allg. Berechnung Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 03.10.2008
Autor: RuffY


> a und b seien die Beträge der beteiligten Vektoren und
> [mm]\varphi[/mm] ihr Zwischenwinkel.
>  Du kennst sicher die Formeln
>  
> [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]
>  
> und
>  
> [mm]\vec{a}*\vec{b}=a*b*cos(\varphi)[/mm]
>  
> Mit den Vorgaben der Aufgabe ergeben sich also die
> Gleichungen
>  
> [mm]a*b*|sin(\varphi)|=1[/mm]      und   [mm]a*b*cos(\varphi)=-1[/mm]
>  
> Dividiert man die linken und die rechten Seiten(***), hat
> man:
>  
> [mm]\bruch{|sin(\varphi)|}{cos(\varphi)}=-1[/mm]
>  
> Daraus kann man schliessen, dass [mm]|tan(\varphi)|=1.[/mm]

bis hierhin kann ich dir folgen...

Jedoch kann ich nicht nachvollziehen, warum:

>  Ausserdem muss [mm]cos(\varphi)[/mm] negativ sein und damit
> [mm]\varphi[/mm]
>  ein stumpfer Winkel.

Und im folgenden ist mir die Beziehung dem stumpfen Winkel und:

> Dies passt nur, wenn
> [mm]\varphi=\bruch{3}{4}\pi=135°.[/mm]
>  Der Fall [mm]\varphi=225°[/mm] darf weggelassen werden, weil man
>  als Winkel zwischen Vektoren stets den im Intervall
> [0...180°] nimmt.
>

nicht klar. Ich wäre bereits intuitiv bei dem Ausdruck [mm]|tan(\varphi)|=1.[/mm] davon ausgegangen, dass [mm]\varphi=arctan(1)[/mm] ist.

Bezug
                        
Bezug
Allg. Berechnung Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Fr 03.10.2008
Autor: Al-Chwarizmi


> > a und b seien die Beträge der beteiligten Vektoren und
> > [mm]\varphi[/mm] ihr Zwischenwinkel.
>  >  Du kennst sicher die Formeln
>  >  
> > [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]
>  >  
> > und
>  >  
> > [mm]\vec{a}*\vec{b}=a*b*cos(\varphi)[/mm]
>  >  
> > Mit den Vorgaben der Aufgabe ergeben sich also die
> > Gleichungen
>  >  
> > [mm]a*b*|sin(\varphi)|=1[/mm]      und   [mm]a*b*cos(\varphi)=-1[/mm]
>  >  
> > Dividiert man die linken und die rechten Seiten(***), hat
> > man:
>  >  
> > [mm]\bruch{|sin(\varphi)|}{cos(\varphi)}=-1[/mm]
>  >  
> > Daraus kann man schliessen, dass [mm]|tan(\varphi)|=1.[/mm]
>  bis hierhin kann ich dir folgen...
>  
> Jedoch kann ich nicht nachvollziehen, warum:
>  >  Ausserdem muss [mm]cos(\varphi)[/mm] negativ sein und damit
> > [mm]\varphi[/mm]
>  >  ein stumpfer Winkel.

     Wegen [mm] a\ge [/mm] 0 und [mm] b\ge [/mm] 0 folgt aus [mm]a*b*cos(\varphi)=-1[/mm],
     dass [mm] cos(\varphi) [/mm] negativ sein muss.

>  
> Und im folgenden ist mir die Beziehung dem stumpfen Winkel
> und:
>  > Dies passt nur, wenn

> > [mm]\varphi=\bruch{3}{4}\pi=135°.[/mm]
>  >  Der Fall [mm]\varphi=225°[/mm] darf weggelassen werden, weil
> man
>  >  als Winkel zwischen Vektoren stets den im Intervall
> > [0...180°] nimmt.
> >
> nicht klar. Ich wäre bereits intuitiv bei dem Ausdruck
> [mm]|tan(\varphi)|=1.[/mm] davon ausgegangen, dass [mm]\varphi=arctan(1)[/mm]
> ist.

Die Gleichung  [mm] |tan(\varphi)|=1 [/mm] führt auf die Möglichkeiten

     [mm] tan(\varphi)=1 [/mm]       (---> [mm] \varphi=45° [/mm] oder [mm] \varphi=225°) [/mm]

     [mm] tan(\varphi)=-1 [/mm]      (---> [mm] \varphi=-45°\hat=315° [/mm] oder [mm] \varphi=135°) [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]