matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenAllgemeine Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentialgleichungen" - Allgemeine Lösung
Allgemeine Lösung < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Mo 13.06.2016
Autor: Ice-Man

Aufgabe
Ermitteln Sie die allgemeine Lösung.

a) [mm] x^{2}y''-xy'+2y=0 [/mm]

Angegeben Lösung: [mm] y=x(C_{1}cos[ln(x)]+C_{2}sin[ln(x)] [/mm]

b) [mm] x^{2}y''-3xy'+4y=ln(x) [/mm]

Angegebene Lösung: [mm] \bruch{1}{4}[1+ln(x)]+x^{2}[C_{1}+C_{2}ln(x)] [/mm]

c) [mm] x^{2}y''-4xy'+6y=x^{5} [/mm]

Angegebene Lösung: [mm] (\bruch{x^{3}}{6}+C_{1}x+C_{2})x^{2} [/mm]

Hallo,

ich habe hier einmal versucht diese Aufgaben zu rechnen. Allerdings habe ich den ein oder anderen Fehler.

Vielleicht kann mir ja jemand meine Fehler evtl. bitte aufzeigen und mir somit weiterhelfen. Dafür wäre ich dankbar.
[mm] C_{1,2} [/mm] sind konstanten. Und ich würde jetzt einfach mal den allgemeinen Ansatz weg lassen. Sorry schon einmal dafür.

a)

[mm] \lambda^{2}-2\lambda+2=0 [/mm]

[mm] \lambda_{1}=-1+j [/mm]
[mm] \lambda_{2}=-1+j [/mm]

[mm] y=C_{1}e^{-1+j*x}+C_{2}e^{-1+j*x}=C_{1}e^{^-1-j}e^{x}+C_{2}e^{-1+j}e^{x} [/mm]
[mm] y=xC_{1}cos(\bruch{1}{x})+xC_{2}sin(\bruch{1}{x}) [/mm]

b)

[mm] y_{Homogen}=C_{1}x^{2}+C_{2}x*ln(x) [/mm]

[mm] y_{Partikulär} [/mm] (Ansatz)=A*ln(x)
[mm] y'=\bruch{A}{x} [/mm]
[mm] y''=-\bruch{A}{x^{2}} [/mm]

Einsetzen in die Ausgangsgleichung,

[mm] x^{2}(-\bruch{A}{x^{2}})-3x(\bruch{A}{x})+4A*ln(x)=ln(x) [/mm]

-A+3A+4A*ln(x)=ln(x)

A(-1-3+4)ln(x)=ln(x)

0=ln(x)      Das ist ja Unsinn

c)

[mm] y_{Homogen}=C_{1}x^{3}+C_{2}x^{2} [/mm]

[mm] y_{Partikulär} (Ansatz)=Ax^{5} [/mm]

[mm] y'=5Ax^{4} [/mm]
[mm] y''=20Ax^{3} [/mm]

Einsetzen in die Ausgangsgleichung:

[mm] x^{2}(20Ax^{3})-4x(5Ax^{4})+6Ax^{5}=x^{2} [/mm]

[mm] A=\bruch{1}{6x^{3}} [/mm]

[mm] y=C_{1}x^{3}+C_{2}x^{2}+\bruch{1}{6x^{3}}=(\bruch{1}{6x^{5}}+C_{1}x+C_{2})x^{2} [/mm]

Ich hoffe ich habe alles einigermaßen ausreichend formuliert. Sollte das nicht der Fall sein dann entschuldige ich mich schon einmal ;).

Dann nochmal vielen Dank im voraus.


        
Bezug
Allgemeine Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mi 15.06.2016
Autor: Martinius

Hallo Ice-Man,

es handelt sich um sog. Eulersche Differentialgleichungen.

Siehe hier am Ende des Artikels:

[]Matheplanet Differentialgleichungen


LG, Martinius

Bezug
        
Bezug
Allgemeine Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Sa 18.06.2016
Autor: Martinius

Hallo Ice-Man,

> Ermitteln Sie die allgemeine Lösung.
>  
> a) [mm]x^{2}y''-xy'+2y=0[/mm]
>  
> Angegeben Lösung: [mm]y=x(C_{1}cos[ln(x)]+C_{2}sin[ln(x)][/mm]
>  
> b) [mm]x^{2}y''-3xy'+4y=ln(x)[/mm]
>  
> Angegebene Lösung:
> [mm]\bruch{1}{4}[1+ln(x)]+x^{2}[C_{1}+C_{2}ln(x)][/mm]
>  
> c) [mm]x^{2}y''-4xy'+6y=x^{5}[/mm]
>  
> Angegebene Lösung: [mm](\bruch{x^{3}}{6}+C_{1}x+C_{2})x^{2}[/mm]
>  Hallo,
>  
> ich habe hier einmal versucht diese Aufgaben zu rechnen.
> Allerdings habe ich den ein oder anderen Fehler.
>  
> Vielleicht kann mir ja jemand meine Fehler evtl. bitte
> aufzeigen und mir somit weiterhelfen. Dafür wäre ich
> dankbar.
> [mm]C_{1,2}[/mm] sind konstanten. Und ich würde jetzt einfach mal
> den allgemeinen Ansatz weg lassen. Sorry schon einmal
> dafür.
>
> a)
>  
> [mm]\lambda^{2}-2\lambda+2=0[/mm]



Da Du die charakteristische Gleichung richtig hast, hast Du wohl zuvor richtig substituiert:  [mm] $x\;=\;e^t$ [/mm]

Danach wird es aber fehlerhaft - in Sonderheit bei der späteren Resubstitution:   [mm] $t\;=\;ln(x)$ [/mm] .

[mm]\lambda_{1,2}\;=\;1 \pm \;i[/mm]

[mm] $u(t)\;=\;e^t* \left[ \;C_{1}*sin(t)+C_{2}*cos(t) \right]$ [/mm]   Nun resubstitutieren, mit:   [mm] $t\;=\;ln(x)$ [/mm]

[mm] $y(x)\;=\;e^{ln(x)}* \left[ \;C_{1}*sin(ln(x))+C_{2}*cos(ln(x)) \right]$ [/mm]

[mm] $y(x)\;=\;x* \left[ \;C_{1}*sin(ln(x))+C_{2}*cos(ln(x)) \right]$ [/mm]



  

> [mm]\lambda_{1}=-1+j[/mm]
>  [mm]\lambda_{2}=-1+j[/mm]
>  
> [mm]y=C_{1}e^{-1+j*x}+C_{2}e^{-1+j*x}=C_{1}e^{^-1-j}e^{x}+C_{2}e^{-1+j}e^{x}[/mm]
>  [mm]y=xC_{1}cos(\bruch{1}{x})+xC_{2}sin(\bruch{1}{x})[/mm]
>  
> b)
>  
> [mm]y_{Homogen}=C_{1}x^{2}+C_{2}x*ln(x)[/mm]


Nein.   [mm]\lambda_{1,2}\;=\;2[/mm]

[mm] $u(t)\;=\;e^{2t}*\left[C_1*t+C_2 \right]$ [/mm]   Nun resubstitutieren, mit:   [mm] $t\;=\;ln(x)$ [/mm]

[mm] $y(x)\;=\;e^{2*ln(x)}*\left[C_1*ln(x)+C_2 \right]$ [/mm]

[mm] $y(x)_{(hom)}\;=\;x^2*\left[C_1*ln(x)+C_2 \right]$ [/mm]


[mm] $y_{Partikulaer}(Ansatz)=A*ln(x)+B$ [/mm]   und   [mm] $y_p'\;=\;\frac{A}{x}$ [/mm]   und   [mm] $y_p''\;=\;\frac{-A}{x^2}$ [/mm]

Nun einsetzen in die inhomogene DGL:

[mm] $-A-3*A+4*A*ln(x)+4*B\;=\;ln(x)$ [/mm]

[mm] $4*A*ln(x)+4*B-4*A\;=\;1*ln(x)$ [/mm]

Koeffizientenvergleich liefert;

[mm] $A\;=\;\frac{1}{4}$ [/mm]   und   [mm] $B\;=A\;\;=\;\frac{1}{4}$ [/mm]


Damit lautet die partikuläre Lösung:  

[mm] $y_p\;=\;\frac{1}{4}*ln(x)+\frac{1}{4}\;=\;\frac{1}{4}*(ln(x)+1)$ [/mm]  

und die vollständige Lösung:


[mm]y(x)\;=\;\bruch{1}{4}*[1+ln(x)]+x^{2}*[C_{2}+C_{1}*ln(x)][/mm]







>  
> [mm]y_{Partikulär}[/mm] (Ansatz)=A*ln(x)
>  [mm]y'=\bruch{A}{x}[/mm]
>  [mm]y''=-\bruch{A}{x^{2}}[/mm]
>  
> Einsetzen in die Ausgangsgleichung,
>  
> [mm]x^{2}(-\bruch{A}{x^{2}})-3x(\bruch{A}{x})+4A*ln(x)=ln(x)[/mm]
>  
> -A+3A+4A*ln(x)=ln(x)
>  
> A(-1-3+4)ln(x)=ln(x)
>  
> 0=ln(x)      Das ist ja Unsinn


Ja.


>  
> c)
>  
> [mm]y_{Homogen}=C_{1}x^{3}+C_{2}x^{2}[/mm]


Diesmal ist die homogene Lösung richtig.


>  
> [mm]y_{Partikulär} (Ansatz)=Ax^{5}[/mm]


Nein.

[mm]y_{Partikulaer} (Ansatz)=A*x^{5}+B*x^{4}+C*x^{3}+D*x^{2}+E*x+F[/mm]

[mm] $y_p'\;=\;5*A*x^{4}+4*B*x^{3}+3*C*x^{2}+2*D*x+E$ [/mm]

[mm] $y_p''\;=\;20*A*x^{3}+12*B*x^{2}+6*C*x+2*D$ [/mm]


Nun in die inhomogene DGL einsetzen:


[mm] $20*A*x^{5}+12*B*x^{4}+6*C*x^3+2*D*x^2-20*A*x^{5}-16*B*x^{4}-12*C*x^{3}-8*D*x^2-4*E*x+6*A*x^{5}+6*B*x^{4}+6*C*x^{3}+6*D*x^{2}+6*E*x+6*F\;=\;1*x^5$ [/mm]

Koeffizientenvergleich:


[mm] $x^5*(20A-20A+6A)\;=\;1*x^5$ [/mm]   Daraus:   [mm] $A\;=\;\frac{1}{6}$ [/mm]


Das Eintippen des Restes erspare ich mir.


Die partikuläre Lösung lautet daher:  [mm] $y_p\;=\;\frac{1}{6}*x^5$ [/mm]


Die vollständige Lösung ist:


[mm]y\;=\;C_{1}*x^{3}+C_{2}*x^{2}+\frac{x^5}{6}[/mm]

oder eben:


[mm]y\;=\;x^2*\left(C_{1}*x+C_{2}+\frac{x^3}{6}\right)[/mm]






>  
> [mm]y'=5Ax^{4}[/mm]
>  [mm]y''=20Ax^{3}[/mm]
>  
> Einsetzen in die Ausgangsgleichung:
>  
> [mm]x^{2}(20Ax^{3})-4x(5Ax^{4})+6Ax^{5}=x^{2}[/mm]
>  
> [mm]A=\bruch{1}{6x^{3}}[/mm]
>  
> [mm]y=C_{1}x^{3}+C_{2}x^{2}+\bruch{1}{6x^{3}}=(\bruch{1}{6x^{5}}+C_{1}x+C_{2})x^{2}[/mm]
>  
> Ich hoffe ich habe alles einigermaßen ausreichend
> formuliert. Sollte das nicht der Fall sein dann
> entschuldige ich mich schon einmal ;).
>  
> Dann nochmal vielen Dank im voraus.
>  


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]