matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAllgemeine Lösung der DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Allgemeine Lösung der DGL
Allgemeine Lösung der DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lösung der DGL: Rückfrage, Idee, Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 13:48 Sa 03.02.2018
Autor: Dom_89

Aufgabe
Bestimme die allgemeine Lösung der Differentialgleichung:

y``(x)-y(x) [mm] =e^x [/mm]

Hallo,

hier einmal mein bisheriger Ansatz:

y''(x)-y(x) [mm] =e^x [/mm]

[mm] \lambda^2-1 [/mm] = 0

[mm] \lambda [/mm] = [mm] \pm1 [/mm]

[mm] y_{h}(t) [/mm] = [mm] c_{1}e^{x} [/mm] + [mm] c_{2}e^{-x} [/mm]

b(x) = [mm] e^x [/mm] ; [mm] y_{s}(x) [/mm] = [mm] Ae^x [/mm] ; [mm] y_{s}'(x) [/mm] = [mm] Ae^x [/mm] ; [mm] y_{s}´'(x) [/mm] = [mm] Ae^x [/mm]

y''(x)-y(x) [mm] =e^x [/mm]

[mm] y_{s}´'(x)-y_{s}(x) [/mm] = b(x)

[mm] Ae^x-Ae^x=e^x [/mm]

Nun befürchte ich jedoch, dass sich da irgendwo ein Fehler eingeschlichen hat, da ich ja sonst keine Lösung für [mm] y_{s}(x) [/mm] erhalte.

Was habe ich übersehen?

Vielen Dank

        
Bezug
Allgemeine Lösung der DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Sa 03.02.2018
Autor: fred97


> Bestimme die allgemeine Lösung der Differentialgleichung:
>  
> y''(x)-y(x) [mm]=e^x[/mm]
>  Hallo,
>
> hier einmal mein bisheriger Ansatz:
>  
> y''(x)-y(x) [mm]=e^x[/mm]
>  
> [mm]\lambda^2-1[/mm] = 0
>  
> [mm]\lambda[/mm] = [mm]\pm1[/mm]
>  
> [mm]y_{h}(t)[/mm] = [mm]c_{1}e^{x}[/mm] + [mm]c_{2}e^{-x}[/mm]
>  
> b(x) = [mm]e^x[/mm] ; [mm]y_{s}(x)[/mm] = [mm]Ae^x[/mm] ; [mm]y_{s}'(x)[/mm] = [mm]Ae^x[/mm] ;
> [mm]y_{s}´'(x)[/mm] = [mm]Ae^x[/mm]
>  
> y''(x)-y(x) [mm]=e^x[/mm]
>  
> [mm]y_{s}´'(x)-y_{s}(x)[/mm] = b(x)
>  
> [mm]Ae^x-Ae^x=e^x[/mm]
>  
> Nun befürchte ich jedoch, dass sich da irgendwo ein Fehler
> eingeschlichen hat, da ich ja sonst keine Lösung für
> [mm]y_{s}(x)[/mm] erhalte.
>  
> Was habe ich übersehen?

Dein Ansatz  für [mm] y_s [/mm] ist falsch. Probier mal [mm] y_s (x)=axe^x [/mm]


>  
> Vielen Dank


Bezug
                
Bezug
Allgemeine Lösung der DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Sa 03.02.2018
Autor: Dom_89

Hallo fred97,

hat nun alles so funktioniert, wie es sollte.

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]