matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAnalysis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Analysis
Analysis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Irrationalität
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 22.04.2008
Autor: Anni007

Aufgabe
[mm] \fed\mixon [/mm] Sei [mm] n\in \IN [/mm] und [mm] a\in \IN [/mm] mit [mm] a\not= k^n [/mm] für alle [mm] k\in \IN, [/mm] dann gibt es kein x [mm] \in\IQ [/mm] mit [mm] x^n [/mm] = a  


Hi :)
habe schon alles mögliche versucht, kontrapoistion, negation um diese aufgabe zu lösen...komme aber nicht wirklich weiter, drehe mich die ganze zeit im kreis, wäre für tipps sehr dankbar!


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.matheplanet.de


        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Di 22.04.2008
Autor: abakus


> [mm]\fed\mixon[/mm] Sei [mm]n\in \IN[/mm] und [mm]a\in \IN[/mm] mit [mm]a\not= k^n[/mm] für
> alle [mm]k\in \IN,[/mm] dann gibt es kein x [mm]\in\IQ[/mm] mit [mm]x^n[/mm] = a  
>
> Hi :)
>  habe schon alles mögliche versucht, kontrapoistion,
> negation um diese aufgabe zu lösen...komme aber nicht
> wirklich weiter, drehe mich die ganze zeit im kreis, wäre
> für tipps sehr dankbar!
>  
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  www.matheplanet.de
>  

Hallo,
versuche doch mal, die Zahl x in der Form p/q (mit teilerfremden Zahlen p und q) darzustellen.
Viele Grüße
Abakus

Bezug
                
Bezug
Analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Di 22.04.2008
Autor: Anni007

das habe ich bereits versucht, wenn ich dies allerdings tue, warum kann der Nenner nicht 1 sein, der zähler k und damit wäre [mm] p^n/q^n [/mm] dies soll [mm] \not= [/mm] sein. dann wäre es eine natürliche zahl und das ist doch eine teilmenge von den rationalen zahlen....
mh...


Bezug
                        
Bezug
Analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mi 23.04.2008
Autor: abakus


> das habe ich bereits versucht, wenn ich dies allerdings
> tue, warum kann der Nenner nicht 1 sein, der zähler k und
> damit wäre [mm]p^n/q^n[/mm] dies soll [mm]\not=[/mm] sein. dann wäre es eine
> natürliche zahl und das ist doch eine teilmenge von den
> rationalen zahlen....
>  mh...
>  

... anschließend beide Seiten mit [mm] q^n [/mm] multiplizieren, beide Seiten vergleichen und daran denken, dass p und q teilerfremd sind...
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]