matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAnalytische Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Analytische Funktion
Analytische Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Funktion: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 13:48 Do 29.10.2009
Autor: Alaizabel

Aufgabe
Warum gilt: [mm] \cosz=0 [/mm] nur wenn [mm] z=(2*k+1)*\pi [/mm]

Hallo :)

hier meine letzte Frage zu analytischen Funktionen :)

also [mm] \cos [/mm] ist null bei allen vielfachen von [mm] \pi, [/mm] das ist mir bewusst.
deshalb würde ich [mm] 2k*\pi [/mm] noch verstehen, aber was sagt mir diese 1?
und warum ist das so?

Vielen lieben Dank für eure Mühen,

liebste Grüße :)

        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Do 29.10.2009
Autor: Gonozal_IX

Hiho,

also cos ist 0 bei [mm] \bruch{\pi}{2}, [/mm] bei vielfachen von [mm] \pi [/mm] ist es [mm] $\pm [/mm] 1$.
Also irgendwas stimmt bei deiner Aufgabe nicht.

mFG,
Gono.



Bezug
                
Bezug
Analytische Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 29.10.2009
Autor: Alaizabel

Hallo Gono,

vielen Dank für deine Antwort, sry, da hab ich mal wieder alles durcheinander geschmissen :D

aber wenn k nun z.b. für [mm] \bruch{1}{4} [/mm] stehen würde passts ja wieder (ich weiß leider nicht wofür das k steht). Dann wäre [mm] (2*\bruch{1}{4}+1)\pi [/mm]
also [mm] x=(2*k+1)\pi [/mm] und y=0

Liebe Grüße und Danke für deine Hilfe :)

Liebe Grüße :)

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 29.10.2009
Autor: fred97

Deine Aufgabe sollte wohl so lauten:

              $ cos(z) = 0 [mm] \gdw [/mm] z = [mm] \bruch{1}{2}(2k+1) \pi$ [/mm]   (k [mm] \in \IZ) [/mm]

FRED

Bezug
                        
Bezug
Analytische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 29.10.2009
Autor: MatheOldie

Hallo Aizabel,

2k+1 , k aus Z, gibt eine ungerade Zahl an.
2k , k aus Z gibt eine gerade Zahl an.

Mit der Formulierung von Fred werden also alle ungeradzahligen Vielfachen von Pi/2 charakterisiert.

Gruß, MatheOldie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]