matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAnalytische Geometrie-
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Analytische Geometrie-
Analytische Geometrie- < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie-: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:00 So 12.12.2010
Autor: Dust

Aufgabe
2. Es seien die Punkte [mm] A(1|1|0) , B(-1|2|1) und C(2|-2| 3) gegeben.[/mm].

2a) Es gibt eine eindeutig bestimmte Ebene E, in welcher alle drei Punkte liegen. Geben Sie für E eine Ebenengleichung in Parameter- und eine Ebenengleichung in Koordinatenform an.

2b) Zusätzlich sei der Punkt [mm] D(0|5|0) [/mm] gegeben. Geben Sie eine Gleichung derjenigen Geraden an, die durch D geht und auf der Ebene E senkrecht steht.

Bestimmen Sie den Schnittpunkt F von g und E und geben Sie den Abstand von D zur Ebene E an.

Hallo,

Zu Aufgabe 2a).

[mm] \vec a = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] ,  [mm] \vec b = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} [/mm]  und  [mm] \vec c = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} [/mm]

Die Ebene E wird durch die Gleichung

[mm] \vec x = \vec a + r * ( \vec b - \vec a) + s * ( \vec c - \vec a) r , s \in \IR [/mm]

beschrieben.

Mache ich hier den richtigen Ansatz ?

Vielen Dank für euere Hilfe

Gruss Dust


        
Bezug
Analytische Geometrie-: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 So 12.12.2010
Autor: Ray07

hi^^

wenn du ein komma vor dem letzten r vergessen hast dann ist der Ansatz sehr richtig^^
wie einer aus meiner klasse mal sagt "arbasca muss man immer machen"


Bezug
                
Bezug
Analytische Geometrie-: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:35 Mi 15.12.2010
Autor: Dust

Hallo,

[mm] E : \vec x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] + [mm] r * \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] + [mm] s * \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm]

[mm] E : \vec x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + r * \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + s * \begin{pmatrix} 1 \\ -3 \\ 3 \end{pmatrix} [/mm]

Das führt zu dem LGS in den drei Unbekannten [mm] x_1 , x_2 [/mm] und  [mm] x_3[/mm]

[mm] x_1 = 1 - 2r + s [/mm]
[mm] x_2 = 1 + r -3s [/mm]
[mm] x_3 = r + 3s [/mm]

[mm] x_1 = 1 -2r + s [/mm]         +2r ; [mm] - x_1 [/mm]
[mm] 2r = 1 + s - x_1 [/mm]       : 2

[mm] r = \bruch{1} {2} + \bruch{1} {2} s - \bruch{1} {2} x_1 [/mm]

r eingesetzt in [mm] x_2 [/mm]

[mm] x_2 = 1 + r - 3s [/mm]
[mm] x_2 = 1 + 0.5 + 0,5s - 0,5x_1 - 3s [/mm]
[mm] x_2 = 1.5 - 0,5x_1 - 2,5s [/mm]               + 2 ,5s ; [mm] -x_2 [/mm]
[mm]2,5s = 1.5 - 0,5x_1 - x_2 [/mm]                : 2,5

[mm] s = \bruch{1.5} {2.5} - \bruch{0,5} {2,5} x_1 - \bruch{1} {2,5} x_2 [/mm]

[mm] s = 0,6 - 0,2 x_1 - 0,4x_2 [/mm]

s und r eingesetzt in [mm] x_3 [/mm]

[mm] x_3 = r + 3s [/mm]#

[mm] x_3 = 0,5 + 0,5s - 0,5x_1 + 3s [/mm]      | 3s + 0,5s

[mm] x_3 = 0,5 - 0,5x_1 + 3,5 * ( 0,6 - 0,2x_1 - 0,4x_2 [/mm]

[mm] x_3 = 0,5 - 0,5x_1 + 3,5 * 0,6 + 3,5 * -0,2x_1 + 3,5 * - 0,4x_2 [/mm]

[mm] x_3 = 0,5 - 0,5x_1 + 2,1 - 0,7x_1 -1,4x_2 [/mm]

[mm] x_3 = 2,6 -1,2x_1 -1,4x_2 [/mm]      -2,6 ; [mm] -x_3[/mm]

[mm] -2,6 = -1,2x_1 - 1,4x_2 - x_3 [/mm]         : -2,6

[mm] 1 = \bruch{6} {13} x_1 + \bruch{7} {13}x_2 + \bruch{5} {13} x_3 [/mm]

Die Koordinatengleichung lautet [mm] \bruch{6}{13} x_1 + \bruch{7} {13} x_2 + \bruch{5} {13} x_3 = 1 [/mm]

Vielen Dank für euere Hilfe

Gruss Dust


Bezug
                        
Bezug
Analytische Geometrie-: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mi 15.12.2010
Autor: MathePower

Hallo Dust,

> Hallo,
>  
> [mm]E : \vec x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] + [mm]r * \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm]
> + [mm]s * \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm]
>  
> [mm]E : \vec x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + r * \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + s * \begin{pmatrix} 1 \\ -3 \\ 3 \end{pmatrix}[/mm]
>  
> Das führt zu dem LGS in den drei Unbekannten [mm]x_1 , x_2[/mm] und
>  [mm]x_3[/mm]
>  
> [mm]x_1 = 1 - 2r + s[/mm]
>  [mm]x_2 = 1 + r -3s[/mm]
>  [mm]x_3 = r + 3s[/mm]
>  
> [mm]x_1 = 1 -2r + s[/mm]         +2r ; [mm]- x_1[/mm]
>  [mm]2r = 1 + s - x_1[/mm]      
> : 2
>  
> [mm]r = \bruch{1} {2} + \bruch{1} {2} s - \bruch{1} {2} x_1[/mm]
>
> r eingesetzt in [mm]x_2[/mm]
>  
> [mm]x_2 = 1 + r - 3s[/mm]
>  [mm]x_2 = 1 + 0.5 + 0,5s - 0,5x_1 - 3s[/mm]
>  [mm]x_2 = 1.5 - 0,5x_1 - 2,5s[/mm]
>               + 2 ,5s ; [mm]-x_2[/mm]
>  [mm]2,5s = 1.5 - 0,5x_1 - x_2[/mm]                : 2,5
>  
> [mm]s = \bruch{1.5} {2.5} - \bruch{0,5} {2,5} x_1 - \bruch{1} {2,5} x_2[/mm]
>  
> [mm]s = 0,6 - 0,2 x_1 - 0,4x_2[/mm]
>  
> s und r eingesetzt in [mm]x_3[/mm]
>  
> [mm]x_3 = r + 3s [/mm]#
>  
> [mm]x_3 = 0,5 + 0,5s - 0,5x_1 + 3s[/mm]      | 3s + 0,5s
>  
> [mm]x_3 = 0,5 - 0,5x_1 + 3,5 * ( 0,6 - 0,2x_1 - 0,4x_2[/mm]
>  
> [mm]x_3 = 0,5 - 0,5x_1 + 3,5 * 0,6 + 3,5 * -0,2x_1 + 3,5 * - 0,4x_2[/mm]
>  
> [mm]x_3 = 0,5 - 0,5x_1 + 2,1 - 0,7x_1 -1,4x_2[/mm]
>  
> [mm]x_3 = 2,6 -1,2x_1 -1,4x_2[/mm]      -2,6 ; [mm]-x_3[/mm]
>  
> [mm]-2,6 = -1,2x_1 - 1,4x_2 - x_3[/mm]         : -2,6
>  
> [mm]1 = \bruch{6} {13} x_1 + \bruch{7} {13}x_2 + \bruch{5} {13} x_3[/mm]
>  
> Die Koordinatengleichung lautet [mm]\bruch{6}{13} x_1 + \bruch{7} {13} x_2 + \bruch{5} {13} x_3 = 1[/mm]
>


Das ist richtig. [ok]


> Vielen Dank für euere Hilfe
>  
> Gruss Dust

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]