matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAnordnung von Türme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Anordnung von Türme
Anordnung von Türme < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnung von Türme: Knobeln
Status: (Frage) überfällig Status 
Datum: 17:03 Do 25.04.2013
Autor: wieschoo

Hi,

Bei einem Thema in dem ich mich eingelesen habe kam ein Problem auf, welches sich wie folgt beschreiben lässt:

Wie viele Möglichkeiten gibt es Türme so auf einem [mm]n\times n[/mm] großen Schachbrett platzieren, sodass nie zwei Türme horizontal bzw. vertikal direkt nebeneinander stehen?

z.B. erlaubt:
[Dateianhang nicht öffentlich]
​z.B. nicht erlaubt:
[Dateianhang nicht öffentlich]

Das ist nur eine Knobelaufgabe und kein normales Hilfegesuch.

Für n=1
[Dateianhang nicht öffentlich]
und n=2 gäbe es folgende Möglichkeiten:
[Dateianhang nicht öffentlich]

Gruß
​wieschoo

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Anhang Nr. 2 (Typ: PNG) [nicht öffentlich]
Anhang Nr. 3 (Typ: PNG) [nicht öffentlich]
Anhang Nr. 4 (Typ: PNG) [nicht öffentlich]
        
Bezug
Anordnung von Türme: glaub ich nicht, zu langweilig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Do 25.04.2013
Autor: reverend

Hallo wieschoo,

so, wie die Aufgabe jetzt gerade (1. Version) gestellt ist, ist sie ja gähnend langweilig.
Gefragt ist die Maximalzahl an Türmen auf einem n*n-Brett, so dass nirgends zwei Türme direkt nebeneinander/übereinander stehen.

Für n=2k sind das [mm] 2k^2 [/mm] Türme, für n=2k-1 sind es [mm] k^2+(k-1)^2=2k^2-2k+1 [/mm] Türme.

Das kannst Du nicht meinen. Ist vielleicht gesucht, wieviele unterschiedliche erlaubte Stellungen es gibt, also auch solche mit weniger Türmen?

Wenn ja, wie ist dann mit Symmetrien umzugehen?

Grüße
reverend

Bezug
                
Bezug
Anordnung von Türme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Do 25.04.2013
Autor: wieschoo

>
> Das kannst Du nicht meinen.

Ja. Das hast du Recht.

> also auch solche mit weniger Türmen?

Ja

> Wenn ja, wie ist dann mit Symmetrien umzugehen?

Für mich sind gespiegelte bzw. gedrehte Konstellationen ebenfalls unterschiedlich. (Also ohne "bis auf Symmetrie".)

Bezug
        
Bezug
Anordnung von Türme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 10.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]