matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAnsätze für Grenzwertaufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Ansätze für Grenzwertaufgaben
Ansätze für Grenzwertaufgaben < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansätze für Grenzwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Di 06.04.2010
Autor: Palisaden-Honko

Aufgabe
Bestimmen Sie:
[mm] (i)\limes_{x\rightarrow\infty}\bruch{sin x -sinh x}{cos x -cosh x} [/mm]
[mm] (ii)\limes_{x\rightarrow0}(cot(x) [/mm] + [mm] \bruch{1}{e^{-x}-1}) [/mm]

Hallo zusammen!

Ich rechne gerade Altklausuren und bin auf diese Aufgaben gestossen, zu denen ich absolut keinen Ansatz finde.

Bei (i) hab ichs mit l'Hospital versucht, aber da dreht man sich nur im Kreis.
Bei (ii)finde ich auch keine Umformung, die mich weiterbringt. Hab schon versucht, cot x durch [mm] \bruch{1}{tan x} [/mm] zu ersetzen, aber das brachte mich auch nicht weiter...

Hat jemand einen Vorschlag oder zwei für mich?

Gruß,

Honko

        
Bezug
Ansätze für Grenzwertaufgaben: Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 16:32 Di 06.04.2010
Autor: Roadrunner

Hallo Honko!


Klammere in Zähler und Nenner [mm] $\cosh(x)$ [/mm] aus.

Anschließend sich die Definition des [mm] $\tanh(x) [/mm] \ = \ [mm] \bruch{sinh(x)}{\cosh(x)}$ [/mm] ansehen und daraus auf den Gesamtgrenzwert schließen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Ansätze für Grenzwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 06.04.2010
Autor: Palisaden-Honko

Hm... Damit komme ich auf
[mm] \limes_{x\rightarrow\infty}\bruch{\bruch{sin(x)}{cos (x)}-tanh(x)}{\bruch{cos (x)}{cosh (x)}-1} [/mm]
=-1

Kommt das hin?

Bezug
                        
Bezug
Ansätze für Grenzwertaufgaben: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:59 Di 06.04.2010
Autor: Roadrunner

Hallo Honko!


> Hm... Damit komme ich auf
> [mm]\limes_{x\rightarrow\infty}\bruch{\bruch{sin(x)}{cos (x)}-tanh(x)}{\bruch{cos (x)}{cosh (x)}-1}[/mm]

Im Nenner des "kleinen Bruches" im Zähler muss es natürlich [mm] $\cosh(x)$ [/mm] heißen (mit "h").

  

> =-1

[notok] Überprüfe nochmals das Vorzeichen.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ansätze für Grenzwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Di 06.04.2010
Autor: Palisaden-Honko


[mm] \limes_{x\rightarrow\infty}\bruch{\bruch{sin(x)}{cosh (x)}-tanh(x)}{\bruch{cos (x)}{cosh (x)}-1} [/mm]
=1

Oh mann, das kommt davon, wenn man es zu eilig hat... Danke für die Hilfe!

Gruß,

Honko

Bezug
                                        
Bezug
Ansätze für Grenzwertaufgaben: besser
Status: (Antwort) fertig Status 
Datum: 17:06 Di 06.04.2010
Autor: Roadrunner

Hallo Honko!


So sieht es schon viel besser aus. [daumenhoch]


Gruß vom
Roadrunner


Bezug
        
Bezug
Ansätze für Grenzwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Di 06.04.2010
Autor: Leopold_Gast

Und bei der zweiten Aufgabe würde ich mit den Anfängen von Potenzreihen rechnen:

[mm]\cot x + \frac{1}{\operatorname{e}^{-x} - 1} = \frac{1 - \frac{x^2}{2} + O(x^4)}{x - \frac{x^3}{6} + O(x^5)} + \frac{1}{-x + \frac{x^2}{2} + O(x^3)} = \frac{1}{x} \left( \frac{1 - \frac{x^2}{2} + O(x^4)}{1 - \frac{x^2}{6} + O(x^4)} - \frac{1}{1 - \frac{x}{2} + O(x^2)} \right)[/mm]

[mm]= \frac{1}{x} \left( \left( 1 + O(x^2) \right) - \left( 1 + \frac{x}{2} +O(x^2) \right) \right) = \frac{1}{x} \left( - \frac{x}{2} + O(x^2) \right) = - \frac{1}{2} + O(x)[/mm]


EDIT
Fehlerhaftes Vorzeichen nach Intervention von qsxqsx geändert. Danke.

Bezug
                
Bezug
Ansätze für Grenzwertaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 Mi 07.04.2010
Autor: qsxqsx

Ich glaube im ersten Ausdruck sollte das +1 ein -1 sein, oder? Gruss

cot(x) + [mm] \bruch{1}{e^{-x} - 1} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]