matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikArzt Hausbesuche möglickeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Arzt Hausbesuche möglickeiten
Arzt Hausbesuche möglickeiten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arzt Hausbesuche möglickeiten: Korrektur, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:52 Sa 21.02.2009
Autor: groedi2001

Aufgabe
Eine Arzt macht Hausbesuche bei 7 Patienten. Wie viele möglichkeiten , sie zu besuchen , gibt es,
a.) insgesamt
b.) wenn er einen bestimmten Patienten erst am schluß besucht?

Hab da folgendes gerechnet.

A

[mm] P^n=n [/mm]
P=7!= 5040

B.

k= 1 weil ein Patient ausgewählt wurde
n=7 anzahl der Patienten
[mm] V=\bruch{n!}{(n-k)!}=\bruch{7!}{(7-1)!}=7 [/mm]



Stimmen meine Ergebnisse?

Wenn nicht wo liegten der Fehler bin mir bei b ziemlich unsicher.

Grüße Dirk


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Arzt Hausbesuche möglickeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Sa 21.02.2009
Autor: angela.h.b.


> Eine Arzt macht Hausbesuche bei 7 Patienten. Wie viele
> möglichkeiten , sie zu besuchen , gibt es,
>  a.) insgesamt
>  b.) wenn er einen bestimmten Patienten erst am schluß
> besucht?
>  Hab da folgendes gerechnet.
>  
> A
>  
> [mm]P^n=n[/mm]
>  P=7!= 5040

Hallo,

das ist richtig.  

(Erstaunlich, daß Ärzte bei so viel Qual der Wahl überhaupt loskommen.)

> B.
>
> k= 1 weil ein Patient ausgewählt wurde
>  n=7 anzahl der Patienten
>  [mm]V=\bruch{n!}{(n-k)!}=\bruch{7!}{(7-1)!}=7[/mm]

Wundert es Dich nicht, daß nur so wenig  Möglichkeiten übrigbleiben?

Wo kommt die von Dir durchgeführte Rechnung her?

Wenn der letzte Patient festlegt, kann er die Reihenfolge für die verbleibenden 6 Patienten doch völlig frei wählen.

Gruß v. Angela


>  
>
>
> Stimmen meine Ergebnisse?
>  
> Wenn nicht wo liegten der Fehler bin mir bei b ziemlich
> unsicher.
>  
> Grüße Dirk
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Arzt Hausbesuche möglickeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Sa 21.02.2009
Autor: groedi2001

Natürlich kam mir das wenig vor

Hab das mit der Formel für Variation ohne Wiederholung gerechnet.

Aber ich glaub ich hab jetzt eine Vermutung, ich muss die 6! nehmen, das sind dann 720 und bei jeder dieser Varianten ist Patient Müller als letztes dran.

Hoffe mal ich lieg jetzt richtig.

PS. jetzt fällt es Onkel doc bestimmt leichter seine Wahl zu treffen.

Bezug
                        
Bezug
Arzt Hausbesuche möglickeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Sa 21.02.2009
Autor: angela.h.b.


> Natürlich kam mir das wenig vor
>  
> Hab das mit der Formel für Variation ohne Wiederholung
> gerechnet.
>  
> Aber ich glaub ich hab jetzt eine Vermutung, ich muss die
> 6! nehmen, das sind dann 720 und bei jeder dieser Varianten
> ist Patient Müller als letztes dran.
>  
> Hoffe mal ich lieg jetzt richtig.

Hallo,

jedenfalls stimmt dies mit meiner Meinung und berechnung überein, und obgleich ich kombinatorisch eher ein trübes Licht bin, bin ich mir ganz sicher.

>  
> PS. jetzt fällt es Onkel doc bestimmt leichter seine Wahl
> zu treffen.

Genau. Eine Entscheidung getroffen, und damit fallen gleich eine Menge Probleme fort.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]